
WHAT IS STRUCTURE?

Michael K. Bergman1, Coralville, Iowa USA

May 28, 2012

AI3:::Adaptive Information blog

One of the main reasons I am such a big fan of RDF as a canonical data model is its ability to capture 
information in structured, semi-structured and unstructured form [1]. These sources are conventionally defined 
as:

• Structured data   — information presented according to a defined data model, often found in relational 
databases or other forms of tabular data 

• Semi-structured data   — does not conform with the formal structure of data models, but contains tags or 
other markers to denote fields within the content. Markup languages embedded in text are a common 
form of such sources 

• Unstructured data   — information content, generally oriented to text, that lacks an explicit data model or 
schema; structured information can be obtained from it via data mining or information extraction. 

A major trend I have written about for some time is the emergence of the structured Web: that is, the exposing 
of structure from these varied sources in order for more information to be interconnected and made 
interoperable. I have posited — really a view shared by many — that the structured Web is an intermediate point 
in the evolution of the Web from one of documents to one where meaningful semantics occurs [2].

It is clear in my writings — indeed in the very name of my company, Structured Dynamics — that structure 
plays a major role in our thinking. The use and reliance on this term, though, begs the question: just what is 
structure in an informational sense? We’ll find it helpful to get at the question of What is structure? from a basis 
using first principles. And this, in turn, may also provide insight into how structure and information are in fact 
inextricably entwined.

A General Definition of Structure
According to Wikipedia, structure is a fundamental notion, of tangible or intangible character, that refers to 

the recognition, observation, nature, or permanence of patterns and relationships of entities. The concept may 
refer to an object, such as a built structure, or an attribute, such as the structure of society.

Structure may be abstract, or it may be concrete. Its realm ranges
from the physical to ideas and concepts. As a term, “structure” seems
to be ubiquitous to every domain. Structure may be found across every
conceivable scale, from the most minute and minuscule to the cosmic.
Even realms without any physical aspect at all — such as ideas and
languages and beliefs — are perceived by many to have structure. We
apply the term to any circumstance in which things are arranged or
connected to one another, as a means to describe the organization or
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relationships of things. We seem to know structure when we see it, and to be able to discern structure of very 
many kinds against unstructured or random backgrounds.

In this way structure quite resembles patterns, perhaps could even be used synonymously with that term. 
Other closely related concepts include order, organization, design or form. When expressed, structure, 
particularly that of a recognizably ordered or symmetrical nature, is often called beautiful.

One aspect of structure, I think, that provides the key to its roles and importance is that it can be expressed in 
shortened form as a mathematical statement. One could even be so bold as to say that mathematics is the 
language of structure. This observation is one of the threads that will help us tie structure to information.

The Patterned Basis of Nature
The natural world is replete with structure. Patterns in nature are regularities of visual form found in the 

natural world. Each such pattern can be modeled mathematically. Typical mathematical forms in nature include 
fractals, spirals, flows, waves, lattices, arrays, Golden ratios, tilings, Fibonacci sequences, and power laws. We 
see them in such structures as clouds, trees, leaves, river networks, fault lines, mountain ranges, craters, animal 
spots and stripes, shells, lightning bolts, coastlines, flowers, fruits, skeletons, cracks, growth rings, heartbeats 
and rates, earthquakes, veining, snow flakes, crystals, blood and pulmonary vessels, ocean waves, turbulence, 
bee hives, dunes and DNA.

The mathematical expression of structures in nature is frequently repeated or 
recursive in nature, often in a self-organizing manner. The swirls of a snail’s shell 
reflect a Fibonacci sequence, while natural landscapes or lifeforms often have a 
fractal aspect (as expressed by some of the figures in this article). Fractals are 
typically self-similar patterns, generally involving some fractional or ratioed 
formula that is recursively applied. Another way to define it is as a detailed pattern 
repeating itself.

Even though these patterns can often be expressed simply and mathematically, 
and they often repeat themselves, their starting conditions can lead to tremendous 

variability and a lack of predictability. This makes them chaotic, as studied under chaos theory, though their 
patterns are often discernible.

While we certainly see randomness in statistics, quantum physics and Brownian motion, it is also striking how
what gives nature its beauty is structure. As a force separate and apart from the random, there appears to be 
something in structure that guides the expression of what is nature and what is so pleasing to behold. Self-similar
and repeated structures across the widest variety of spatial scales seems to be an abiding aspect of nature.

Structure in Language
Such forms of repeated patterns or structure are also inherent in that most unique of human capabilities, 

language. As a symbolic species [3], we first used symbols as a way to represent the ideas of things. Simple 
markings, drawings and ideograms grew into more complicated structures such as alphabets and languages. The 
languages themselves came to embrace still further structure via sentence structures, document structures, and 
structures for organizing and categorizing multiple documents. In fact, one of the most popular aspects of this 
blog site is its Timeline of Information History — worth your look — that shows the progression of structure in 
information throughout human history.

Grammar is often understood as the rules or structure that governs language. It is composed of syntax, 
including punctuation, traditionally understood as the sentence structure of languages, and morphology, which is
the structural understanding of a language’s linguistic units, such as words, affixes, parts of speech, intonation or
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context. There is a whole field of linguistic typology that studies and classifies languages according to their 
structural features. But grammar is hardly the limit to language structure.

Semantics, the meaning of language, used to be held separate from grammar or structure. But via the advent 
of the thesaurus, and then linguistic databases such as WordNet and more recently concept graphs that relate 
words and terms into connected understandings, we also have now come to understand that semantics also has 
structure. Indeed, these very structural aspects are now opening up to us techniques and methods — generally 
classified under the heading of natural language processing (NLP) — for extracting meaningful structure from 
the very basis of written or spoken language.

It is the marriage of the computer with language that is illuminating these understandings of structure in 
language. And that opening, in turn, is enabling us to capture and model the basis of human language discourse 
in ways that can be codified, characterized, shared and analyzed. Machine learning and processing is now 
enabling us to complete the virtual circle of language. From its roots in symbols, we are now able to extract and 
understand those very same symbols in order to derive information and knowledge from our daily discourse. We 
are doing this by gleaning the structure of language, which in turn enables us to relate it to all other forms of 
structured information.

Common Threads Via Patterns
The continuation of structure from nature to language extends across all aspects of human endeavor. I 

remember excitedly describing to a colleague more than a decade ago what likely is a pedestrian observation: 
pattern matching is a common task in many fields. (I had observed that pattern matching in very different forms 
was a standard practice in most areas of industry and commerce.) My “insight” was that this commonality was 
not widely understood, which meant that pattern matching techniques in one field were not often exploited or 
seen as transferable to other domains.

In computer science, pattern matching is the act of checking some sequence of tokens for the presence of the 
constituents of some pattern. It is closely related to the idea of pattern recognition, which is the characterization 
of some discernible and repeated sequence. These techniques, as noted, are widely applied, with each field 
tending to have its own favorite algorithms. Common applications that one sees for such pattern-based 
calculations include communications [4], encoding and coding theory, file compression, data compression, 
machine learning, video compression, mathematics (including engineering and signal processing via such 
techniques as Fourier transforms), cryptography, NLP [5], speech recognition, image recognition, OCR, image 
analysis, search, sound cleaning (that is, error detection, such as Dolby) and gene sequence searching and 
alignment, among many others.

To better understand what is happening here and the commonalities, let’s look at the idea of compression. 
Data compression is valuable for transmitting any form of content in wired or wireless manners because we can 
transmit the same (or closely similar) message faster and with less bandwidth [6]. There are both lossless (no 
loss of information) and lossy compression methods. Lossless data compression algorithms usually exploit 
statistical redundancy — that is, a pattern match — to represent data more concisely without losing information. 
Redundancy in information theory is the number of bits used to transmit a message minus the number of bits of 
actual information in the message. Lossless compression is possible because most real-world data has statistical 
redundancy. In lossy data compression, some loss of information is acceptable by dropping detail from the data 
to save storage space. These methods are guided by research that indicates, say, how certain frequencies may not 
be heard or seen by people and can be removed from the source data.

On a different level, there is a close connection between machine learning and compression: a system that 
predicts the posterior probabilities of a sequence given its entire history can be used for optimal data 
compression (by using arithmetic coding on the output distribution), while an optimal compressor can be used 
for prediction (by finding the symbol that compresses best, given the previous history). This equivalence has 
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been used as justification for data compression as a benchmark for “general intelligence.” On a still different 
level, one major part of cryptography is the exact opposite of these objectives: constructing messages that pattern
matching fails against or is extremely costly or time-consuming to analyze.

When one stands back from any observable phenomena — be it natural or human communications — we can 
see that the “information” that is being conveyed often has patterns, recursion or other structure that enables it to
be represented more simply and compactly in mathematical form. This brings me back to my two favorite 
protagonists in my recent writings — Claude Shannon and Charles S. Peirce.

Information is Structure
Claude Shannon‘s seminal work in 1948 on information theory dealt with the amount of information that 

could be theoretically and predictably communicated between a sender and a receiver [7] [8]. No context or 
semantics were implied in this communication, only the amount of information (for which Shannon introduced 
the term “bits”) and what might be subject to losses (or uncertainty in the accurate communication of the 
message). In this regard, what Shannon called “information” is what we would best term “data” in today’s 
parlance.

The context of Shannon’s paper and work by others preceding him was to 
understand information losses in communication systems or networks. Much of the 
impetus for this came about because of issues in wartime communications and early 
ciphers and cryptography and the emerging advent of digital computers. But the 
insights from Shannon’s paper also relate closely to the issues of data patterns and 
data compression.

A key measure of Shannon’s theory is what he referred to as information entropy, 
which is usually expressed by the average number of bits needed to store or 

communicate one symbol in a message. Entropy quantifies the uncertainty involved in predicting the value of a 
random variable. The Shannon entropy measure is actually a measure of the uncertainty based on the 
communication (transmittal) between a sender and a receiver; the actual information that gets transmitted and 
predictably received was formulated by Shannon as R, which can never be zero because all communication 
systems have losses.

A simple intuition can show how this formulation relates to patterns or data compression. Let’s take a message
of completely random digits. In order to accurately communicate that message, all digits (bits) would have to be 
transmitted in their original state and form. Absolutely no compression of this message is possible. If, however, 
there are patterns within the message (which, of course, now ceases to make the message random), these can be 
represented algorithmically in shortened form, so that we only need communicate the algorithm and not the full 
bits of the original message. If this “compression” algorithm can then be used to reconstruct the bit stream of the 
original message, the data compression method is deemed to be lossless. The algorithm so derived is also the 
expression of the pattern that enabled us to compress the message in the first place (such as a*2+1).

We can apply this same type of intuition to human language. In order to improve communication efficiency, 
the most common words (e.g., “a”, “the”, “I”) should be shorter than less common words (e.g., 
“disambiguation”, “semantics”, “ontology”), so that sentences will not be too long. As they are. This is an 
equivalent principal to data compression. In fact, such repeats and patterns apply to the natural world as well.

Shannon’s idea of information entropy has come to inform the even broader subject of entropy in physics and 
the 2nd Law of Thermodynamics [10]. According to Koelman, “the entropy of a physical system is the minimum
number of bits you need to fully describe the detailed state of the system.” Very random (uncertain) states have 
high entropy, patterned ones low entropy. As I noted recently, in open systems, structures (patterns) are a means 
to speed the tendency to equilibrate across energy gradients [8]. This observation helps provide insight into 
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structure in natural systems, and why life and human communications tend toward less randomness. Structure 
will always continue to emerge because it is adaptive to speed the deltas across these gradients; structure 
provides the fundamental commonality between biological information (life) and human information.

In the words of Thomas Schneider [11], “Information is always a measure of the decrease of uncertainty at a 
receiver.” Of course, in Shannon’s context, what is actually being measured here is data (or bits), not information
embodying any semantic meaning or context. Thus, the terminology may not be accurate for discussing 
“information” in a contemporary sense. But it does show that “structure” — that is, the basis for shortening the 
length of a message while still retaining its accuracy — is information (in the Shannon context). In this 
information there is order or patterns, often of a hierarchical or fractal or graph nature. Any structure that 
emerges that is better able to reduce the energy gradient faster will be favored according to the 2nd Law.

Still More Structure Makes “Information” Information
The data that constitutes “information” in the Shannon sense still lacks context and meaning. In 

communications terms, it is data; it has not yet met the threshold of actionable information. It is in this next step 
that we can look to Charles Sanders Peirce (1839 – 1914) for guidance [9].

The core of Peirce’s world view is based in semiotics, the study and logic of signs. In his seminal writing on 
this, “What is in a Sign?” [10], he wrote that “every intellectual operation involves a triad of symbols” and “all 
reasoning is an interpretation of signs of some kind”. A sign of an object leads to interpretants, which, as signs, 
then lead to further interpretants. Peirce’s triadic logic of signs in fact is a taxonomy of sign relations, in which 
signs get reified and expanded via still further signs, ultimately leading to communication, understanding and an 
approximation of “canonical” truth. Peirce saw the scientific method as itself an ultimate example of this 
process.  The key aspect of signs for Peirce is the ongoing process of interpretation and reference to further 
signs.

Ideograms leading to characters, that get combined into sentences
and other syntax, and then get embedded within contexts of shared
meanings show how these structures compound themselves and lead to
clearer understandings (that is, accurate messages) in the context of human languages. While the Shannon 
understanding of “information” lacked context and meaning, we can see how still higher-order structures may be
imposed through these reifications of symbols and signs that improve the accuracy and efficiency of our 
messages. Though Peirce did not couch his theory of semiosis on structure nor information, we can see it as a 
natural extension of the same structural premises in Shannon’s formulation.

In fact, today, we now see the “structure” in the semantic relationships of language through the graph 
structures of ontologies and linguistic databases such as WordNet. The understanding and explication of these 
structures are having a similarly beneficial effect on how still more refined and contextual messages can be 
composed, transmitted and received. Human-to-machine communications is (merely!) the challenge of codifying
and making explicit the implicit structures in our languages.

The Peirceian ideas of interpretation (context) and compounding and reifying structure are a major intellectual
breakthrough for extending the Shannon “information” theory to information in the modern sense. These insights
also occur within a testable logic for how things and the names of things can be understood and related to one 
another, via logical statements or structures. These, in turn, can be symbolized and formalized into logical 
constructs that can capture the structure of natural language as well as more structured data (or even nature, as 
some of the earlier Peirce speculation asserts [13]).

According to this interpretation of Peirce, the nature of information is the process of communicating a form 
from the object to the interpretant through the sign [14]. The clarity of Peirce’s logic of signs is an underlying 
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factor, I believe, for why we are finally seeing our way clear to how to capture, represent and relate information 
from a diversity of sources and viewpoints that is defensible and interoperable.

Structure is Information
Common to all of these perspectives — from patterns to nature and on to life and then animal and human 

communications — we see that structure is information. Human artifacts and technology, though not “messages”
in a conventional sense, also embody the information of how they are built within their structures [15]. We also 
see the interplay of patterns and information in many processes of the natural world [16] from complexity 
theory, to emergence, to autopoiesis, and on to autocatalysis, self-organization, stratification and cellular 
automata [17]. Structure in its many guises is ubiquitous.

We, as beings who can symbolically record our perceptions, seem to innately recognize
patterns. We see beauty in symmetry. Bilateral symmetry seems to be deeply ingrained in
the inherent perception by humans of the likely health or fitness of other living creatures.
We see beauty in the patterned, repeated variability of nature. We see beauty in the clever
turn of phrase, or in music, or art, or the expressiveness of a mathematical formulation.

We also seem to recognize beauty in the simple. Seemingly complex bit streams that
can be reduced to the short, algorithmic expression are always viewed as more elegant
than lengthier, more complex alternatives. The simple laws of motion and Newtonian
physics fit this pattern, as does Einstein’s E=mc  2  . This preference for the simple is a
preference for the greater adaptiveness of the shorter, more universal pattern to messages,
an insight indicated by Shannon’s information theory.

In the more prosaic terms of my vocation in the Web and information technology, these insights point to the 
importance of finding and deriving structured representations of information — including meaning (semantics) 
— that can be simply expressed and efficiently conveyed. Building upon the accretions of structure in human 
and computer languages, the semantic Web and semantic technologies offer just such a prospect. These insights 
provide a guidepost for how and where to look for the next structural innovations. We find them in the 
algorithms of nature and language, and in making connections that provide the basis for still more structure and 
patterned commonalities.

Ideas and algorithms around loseless compression and graph theory and network analysis are, I believe, the 
next fruitful hunting grounds for finding still higher-orders of structure, which can be simply expressed. The 
patterns of nature, which have emerged incrementally and randomly over the eons of cosmological time, look to 
be an excellent laboratory.

So, as we see across examples from nature and life to language and all manner of communications, 
information is structure and structure is information. And it is simply beautiful.
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