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As an information society we have become a software society. Software is everywhere, from our phones and 
our desktops, to our cars, homes and every location in between. The amount of software used worldwide is 
unknowable; we do not even have agreed measures to quantify its extent or value [1]. We suspect there are at 
least 1 billion lines of code that have accumulated over time [1,2]. On the order of $875 billion was spent 
worldwide on software in 2010, of which about half was for packaged software and licenses and the rest for 
programmer services, consulting and outsourcing [3]. In the U.S. alone, about 2 million people work as 
programmers or related [4].

It goes without saying that software is a very big deal.

No matter what the metrics, it is expensive to develop and maintain software. This is also true for open source,
which has its own costs of ownership [5]. Designing software faster with fewer mistakes and more re-use and 
robustness have clearly been emphases in computer science and the discipline of programming from its 
inception.

This attention has caused a myriad of schools and practices to develop over time. Some of the earlier efforts 
included computer-aided software engineering (CASE) or Grady Booch’s (already cited in [1]) object-oriented 
design (OOD). Fourth-generation languages (4GLs) and rapid application development (RAD) were popular in 
the 1980s and 1990s. Most recently, agile software development or extreme programming have grabbed 
mindshare.

Altogether, there are dozens of software development philosophies, each with its passionate advocates. These 
express themselves through a variety of software development methodologies that might be characterized or 
clustered into the prototyping or waterfall or spiral camps.

In all instances, of course, the drivers and motivations are the same: faster development, more re-use, greater 
robustness, easier maintainability, and lower development costs and total costs of ownership.

The Ontology Perspective in this Mix
For at least the past decade, ontologies and semantic Web-related approaches have also been part of this mix. 

A good summary of these efforts comes from Michael Uschold in an invited address at FOIS 2008 [6]. In this 
review, he points to these advantages for ontology-based approaches to software engineering:

• Re-use — abstract/general notions can be used to instantiate more concrete/specific notions, allowing 
more reuse 
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• Reduced development times — producing software artifacts that are closer to how we think, 
combined with reuse and automation that enables applications to be developed more quickly 
• Increased reliability — formal constructs with automation reduces human error 
• Decreased maintenance costs — increased reliability and the use of automation to convert models to 
executable code reduces errors. A formal link between the models and the code makes software easier to 
comprehend and thus maintain. 

These first four items are similar to the benefits argued for other software engineering methodologies, though 
with some unique twists due to the semantic basis. However, Uschold also goes on to suggest benefits for 
ontology-based approaches not claimed by other methodologies:

• Reduced conceptual gap — application developers can interact with the tools in a way that is closer to
their thinking 
• Facilitate automation — formal structures are amenable to automated reasoning, reducing the load on 
the human, and 
• Agility/flexibility — ontology-driven information systems are more flexible, because you can much 
more easily and reliably make changes in the model than in code. 

In making these arguments, Uschold picks up on the “ontology-driven information systems” moniker first put 
forward by Nicola Guarino in 1998 [7]. The ideas around ODIS have had substantial impact on the semantic 
Web community, especially in the use of formal ontologies and modeling approaches. The FOIS series of 
conferences, and most recently the ODiSE series, have been spawned from these ideas. There is also, for 
example, a fairly rich and developed community working on the integration of UML via ontologies as the drivers
or specifiers of software [8].

Yet, as Uschold is careful to point out, the idea of ODIS extends beyond software engineering to encompass 
all of information systems. My own categorization of how ontologies may contribute to information systems is:

1. Domain modeling — this category includes the domain knowledge representations and reasoning and 
inference bases that are the traditional understanding of ontologies in the semantic space. The structural 
aspects are akin to a database schema definition; the unique aspects of ontologies reside in their logic 
foundations and graph structures, which offer more power in inferencing, reasoning and graph analysis 
than conventional approaches 
2. Model-driven architectures (MDA) — like UML, these are platform-independent specifications that 
provide the functional and dataflow definitions of “models” executed by the system. These are the 
natural progeny of earlier CASE approaches, for example. Such systems also potentially allow graphical 
or visual means for building or hooking together components as a substitute to direct coding 
3. Program specifications and excecutables — though fairly experimental at present, these approaches 
use the languages of RDF, OWL or direct use of logic languages to create the equivalent of executable 
software programs. A couple of experimental systems include Fhat and Neno, for example, point to 
possible future directions in this area [9] 
4. Runtime or utility components — proper construction of ontologies can be a source for labels and 
prompts within user interfaces and other runtime uses. Because of the ontology basis, these contributions
may also be contextual [10] 
5. Automated agents — based on context, user choices and the governing ontologies, new instruction 
sets can be generated via what some term automated agents or “robots” to instruct subsequent steps in 
the software, including potentially analysis or validation. Mission Critical IT [11] is apparently the most 
advanced in this area; we discuss their ODASE approach more below 
6. Bespoke drivers of generic applications — through using and combining a number of the aspects 
above, in its totality this approach is a very different paradigm, as we describe below. 
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When we look at this list from the standpoint of conventional software or software engineering, we see that #1
shares overlaps with conventional database roles and #2, #3 and #4 with conventional programmer or software 
engineering responsibilities. The other portions, however, are quite unique to ontology-based approaches.

But Is Software Engineering Even the Right Focus?
For decades, issues related to how to develop apps better and faster have been proposed and argued about. We 

still have the same litany of challenges and issues from expense to re-use and brittleness. And, unfortunately, 
despite many methodologies du jour, we still see bottlenecks in the enterprise relating to such matters as:

• data access 
• queries 
• data transformations 
• data integration or federation 
• reports 
• other data presentations 
• business analysis, and 
• targeted, specialty functionality. 

Promises such as self-service reporting touted at the inception of data warehousing two decades ago are still to
be realized [12]. Enterprises still require the overhead and layers of IT to write SQL for us and prepare and fix 
reports. If we stand back a bit, perhaps we can come to see that the real opportunity resides in turning the whole 
paradigm of software engineering upside down.

Our objective should not be software per se. Software is merely an intermediary artifact to accomplish some 
given task. Rather than engineering software, the focus should be on how to fulfill those tasks in an optimal 
manner. How can we keep the idea of producing software from becoming this generation’s new buggy whip 
example [13]?

For reasons we delve into a bit more below, it perhaps has required a confluence of some new semantic 
technologies and ontologies to create the opening for a shift in perspective. That shift is one from software as an 
objective in itself to one of software as merely a generic intermediary in an information task pipeline.

Though this shift may not apply (at least with current technologies) to transactional and process-based 
software, I submit it may be fundamental to the broad category of knowledge management. KM includes such 
applications as business intelligence, data warehousing, data integration and federation, enterprise information 
integration and management, competitive intelligence, knowledge representation, and so forth. These are the real
areas where integration and reports and queries and analysis remain frustrating bottlenecks for knowledge 
workers. And, interestingly, these are also the same areas most amenable to embracing an open world (OWA) 
mindset [14].

If we stand back and take a systems perspective to the question of fulfilling functional KM tasks, we see that 
the questions are both broader and narrower than software engineering alone. They are broader because this 
systems perspective embraces architecture, data, structures and generic designs. The questions are narrower 
because software — within this broader context — can be now be generalized as artifacts providing the 
fulfillment of classes of functions.

ODapps: The Ontology-Driven Application Approach
Ontology-driven applications — or ODapps for short — based on adaptive ontologies are a topic we have 

been nibbling around and discussing for some time. In our oft-cited seven pillars of the semantic enterprise we 
devote two pillars specifically (#4 and #3, respectively) to these two components [15]. However, in keeping with
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the systems perspective relevant to a transition from software engineering to generic apps, we should also note 
that canonical data models (via RDF) and a Web-oriented architecture are two additional pillars in the vision.

ODapps are modular, generic software applications designed to operate in accordance with the specifications 
contained in one or more ontologies. The relationships and structure of the information driving these applications
are based on the standard functions and roles of ontologies (namely as domain ontologies as noted under #1 
above), as supplemented by the UI and instruction sets and validations and rules (as noted under #4 and #5 
above). The combination of these specifications as provided by both properly constructed domain ontologies and
supplementary utility ontologies is what we collectively term adaptive ontologies [16].

ODapps fulfill specific generic tasks, consistent with their bespoke design (#6 above) to respond to adaptive 
ontologies. Examples of current ontology-driven apps include imports and exports in various formats, dataset 
creation and management, data record creation and management, reporting, browsing, searching, data 
visualization and manipulation (through libraries of what we call semantic components), user access rights and 
permissions, and similar. These applications provide their specific functionality in response to the specifications 
in the ontologies fed to them.

ODapps are designed more similarly to widgets or API-based frameworks than to the dedicated software of 
the past, though the dedicated functionality (e.g., graphing, reporting, etc.) is obviously quite similar. The major 
change in these ontology-driven apps is to accommodate a relatively common abstraction layer that responds to 
the structure and conventions of the guiding ontologies. The major advantage is that single generic applications 
can supply shared functionality based on any properly constructed adaptive ontology.

In fact, the widget idea from Web 2.0 is a key precursor to the ODapps design. What we see in Web 2.0 are 
dedicated single-purpose widgets that perform a display operation (such as Google Maps) based on the properly 
structured data fed to them (structured geolocational information in the case of GMaps).

In Structured Dynamics‘ early work with RDF-based applications by our predecessor company, Zitgist, we 
demonstrated how the basic Web 2.0 widget idea could be extended by “triggering” which kind of mashup 
widget got invoked by virtue of the data type(s) fed to it. The Query Builder presented contextual choices for 
how to build a SPARQL query via UI based on what prior dropdown list choices were made. The DataViewer 
displayed results with different widgets (maps, profiles, etc.) depending on which part of a query’s results set 
was inspected (by responding to differences in data types). These two apps, in our opinion, remain some of the 
best developed in the semantic Web space, even though development on both ceased nearly four years ago.

This basic extension of data-driven applications — as informed by a bit more structure — naturally evolved 
into a full ontology-driven design. We discovered that — with some minor best practice additions to 
conventional ontologies — we could turn ontologies into powerhouses that informed applications through:

• An understanding of the kind of things under consideration, including their inference chains 
• The types of data in results sets, and how that informs the nature of the widget(s) (maps, calendars, 
timelines, charts, tabular reports, images, stories, media, etc.) appropriate to display and manipulate that 
information, and 
• UI and utility functions such as interface labels, mouseovers, auto-suggests, spelling suggestions, 
synonym matches, etc. 

Like the earlier Zitgist discoveries, basing the applications on only one or two canonical data models and 
serializations (RDF and a simple data exchange XML, which Fred Giasson calls structXML) provides the input 
uniformity to make a library of generic applications tractable. And, embedding the entire framework in a Web-
oriented architecture means it can be distributed and deployed anywhere accessible by HTTP.

Booch has maintained for years that in software design abstraction is good, but not if too abstract [1]. ODapps
are a balanced abstraction within the framework of canonical architectures, data models and data structures. This
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design thus limits software brittleness and maximizes software re-use. Moreover, it shifts the locus of effort from
software development and maintenance to the creation and modification of knowledge structures. The KM 
emphasis can shift from programming and software to logic and terminology [16].

In the sub-sections below, we peel back some portions of this layered design to unveil how some of these 
major pieces interact.

Built Upon an Ontology- and Web-based Architecture

Again, to cite Booch, the most fundamental software design decision is architecture [1]. In the case of 
Structured Dynamics and its support for ODapps, its open semantic framework (OSF) is embedded in a Web-
oriented architecture (WOA). The OSF itself is a layered design that proceeds from a kernel of existing assets 
(data and structures) and proceeds through conversion to Web service access, and then ontology organization and
management via ODapps [17]. The major layers in the OSF stack are:

• Existing assets — any and all existing information and data assets, ranging from unstructured to 
structured. Preserving and leveraging those assets is a key premise 
• scones   / irON – the conversion layer, in part consisting of information extraction of subject concepts 
or named entities (scones) or the instance record Object Notation for conveying XML, JSON or 
spreadsheets (CSV) in RDF-ready form (via irON or RDFizers) 
• structWSF   – a platform-independent suite of more than 20 RESTful Web services, organized for 
managing structured data datasets; it provides the standard, common interface by which existing 
information assets get represented and presented to the outside world and to other layers in the OSF 
stack 
• Ontologies   — are the layer containing the structured assets “driving” the system; this includes the 
concepts and relationships of the domain at hand, and administrative ontologies that guide how the user 
interfaces or widgets in the system should behave 
• conStruct   – connecting modules to enable structWSF and sComponents to be hosted/embedded in 
Drupal, and 
• sComponents   – (mostly) Flex semantic components (widgets) for visualizing and manipulating 
structured data. 

Not all of these layers or even their specifics is necessary for an ontology-driven app design [18]. However, 
the general foundations of generic apps, properly constructed adaptive ontologies, and canonical data models and
structures should be preserved in order to operationalize ODapps in other settings.

OSF is the Basis for Domain-specific Instantiations

The power of this design is that by swapping out adaptive ontologies and relevant data, the entire OSF stack 
as is can be used to deploy multiple instantiations. Potential uses can be as varied as the domain coverage of the 
domain ontologies that drive this framework.

The OSF semantic framework is a completely open and generic one. The same set of tools and capabilities can
be applied to any domain that needs to manage and understand information in its own domain. With the existing 
ODApps in hand, this includes from unstructured text or documents to conventional structured databases.

What changes from domain to domain are the data structures (the ontologies, schema and entity references) 
and their instance data (which can also be converted from existing to canonical forms). Here is an illustration of 
how this generic framework can be leveraged for different deployments. Note that Citizen Dan is a local 
government example of the OSF framework with relatively complete online demos:
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Structured Dynamics continues to wrinkle this basic design for different clients and different industries. As we
round out the starting set of ODapps (see below), the major effort in adapting this generic design to different 
uses is to tailor the ontologies and “RDFize” existing data assets.

Lower Layers

Conversion of existing assets to RDF and canonical forms is not discussed further here. See the irON and 
scones documentation or the TechWiki for more information on these topics.

The structWSF Web Services Layer

The first suite of ODapps occurs at the structWSF Web services layer. structWSF provides a set of generic 
functions and endpoints to:

• Import or export datasets 
• Create, update, delete (CRUD) or otherwise manage data records 
• Search records with full-text and faceted search 
• Browse or view existing records or record sets, based on simple to possible complex selection or 
filtering criteria, or 
• Process results sets through workflows of various natures, involving specialized analysis, information 
extraction or other functions. 

Here is a listing of current ODapp functions within structWSF (with links to details for each):

WSF management Web services User-oriented Web services

• Auth: Validator   
• Auth: Lister   
• Auth Registrar: Access   
• Auth Registrar: WS   
• Ontology: Create   
• Dataset: Create   

• CRUD: Create   
• CRUD: Read   
• CRUD: Update   
• CRUD: Delete   
• Browse   
• Search   
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WSF management Web services User-oriented Web services

• Dataset: Read   
• Dataset: Update   
• Dataset: Delete   

• Scones   
• SPARQL   
• Import   
• Export   

At this level the information access and processing is done largely on the basis of structured results sets. Other
visualization and display ODapps are listed in the next subsection.

The Semantics Components Layer

The visualization and data display and manipulation ODapps are provided via the semantic components layer. 
Structured Dynamics’s sComponents are Flex-based widgets that conform to a standard, generic design. Other 
developers using the OSF framework are developing JavaScript versions [19]. Here is the current library (with 
links to details for each):

New Components Components Extending Flex

• Portable Control Application   
• sBarChart   
• SCO Ontology   
• sControl   
• sDashboard 
• sGenericBox   
• sLinearChart   
• sMap   
• sPieChart   
• sRelationBrowser   
• sStory   
• scones: Story Tagging   
• sWebMap (in development) 

• sHBox   
• sImage   
• sText   

These components can be used in combination with any of the structWSF ODapps, meaning the filtering, 
searching, browsing, import/export, etc., may be combined as an input or output option with the above.

The next animated figure shows how the basic interaction flow works with these components:

7

http://techwiki.openstructs.org/index.php/SText
http://techwiki.openstructs.org/index.php/SImage
http://techwiki.openstructs.org/index.php/SHBox
http://techwiki.openstructs.org/index.php/Scones:_Story_Tagging
http://techwiki.openstructs.org/index.php/SStory
http://techwiki.openstructs.org/index.php/SRelationBrowser
http://techwiki.openstructs.org/index.php/SPieChart
http://techwiki.openstructs.org/index.php/SMap
http://techwiki.openstructs.org/index.php/SLinearChart
http://techwiki.openstructs.org/index.php/SGenericBox
http://techwiki.openstructs.org/index.php/SControl
http://techwiki.openstructs.org/index.php/SCO_Ontology
http://techwiki.openstructs.org/index.php/SBarChart
http://techwiki.openstructs.org/index.php/Portable_Control_Application
http://www.mkbergman.com/948/ontology-driven-apps-using-generic-applications/#app19
http://openstructs.org/semantic-components
http://techwiki.openstructs.org/index.php?title=Export&action=edit&redlink=1
http://techwiki.openstructs.org/index.php?title=Import&action=edit&redlink=1
http://techwiki.openstructs.org/index.php/SPARQL
http://techwiki.openstructs.org/index.php/Scones
http://techwiki.openstructs.org/index.php/Dataset:_Delete
http://techwiki.openstructs.org/index.php/Dataset:_Update
http://techwiki.openstructs.org/index.php/Dataset:_Read


(click for full size)

Using the ODapp structure it is possible to either “drive” queries and results sets selections via direct HTTP 
request via endpoints (not shown) or via simple dropdown selections on HTML forms or Flex widgets (shown). 
This design enables the entire system to be driven via simple selections or interactions without the need for any 
programming or technical expertise.

As the diagram shows, these various sComponents get embedded in a layout canvas for the Web page. By 
interacting with the various components, new queries are generated (most often as SPARQL queries) to the 
various structWSF Web services endpoints. The result of these requests is to generate a structured results set, 
which includes various types and attributes.

An internal ontology that embodies the desired behavior and display options (SCO, the Semantic Component 
Ontology) is matched with these types and attributes to generate the formal instructions to the sComponents. 
When combined with the results set data, and attribute information in the irON ontology, plus the domain 
understanding in the domain ontology, a synthetic schema is constructed that instructs what the interface may do 
next. Here is an example schema:
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(click for full size)

These instructions are then presented to the sControl component, which determines which widgets (individual 
components, with multiples possible depending on the inputs) need to be invoked and displayed on the layout 
canvas.

As new user interactions occur with the resulting displays and components, the iteration cycle is generated 
anew, again starting a new cycle of queries and results sets. Importantly, as these pathways and associated 
display components get created, they can be named and made persistent for later re-use or within dashboard 
invocations.

Self-service Reporting

Since self-service reporting has been such a disappointment [12], it is worth noting another aspect from this 
ODapp design. Every “thing” that can be presented in the interface can have a specific display template 
associated with it. Absent another definition, for example, any given “thing” will default to its parental type 
(which, ultimate, is “Thing”, the generic template display for anything without a definition; this generally 
defaults to a presentation of all attributes for the object).

However, if more specific templates occur in the inference path, they will be preferentially used. Here is a 
sample of such a path:
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Thing

Product

Camera

Digital 
Camera

SLR Digital 
Camera

Olympus Evolt 
E520

At the ultimate level of a particular model of Olympus camera, its display template might be exactly tailored 
to its specifications and attributes.

This design is meant to provide placeholders for any “thing” in any domain, while also providing the latitude 
to tailor and customize to every “thing” in the domain.

It is critical that generic apps through an ODapp approach also provide the underpinnings for self-service 
reporting. The ultimate metric is whether consumers of information can create the reports they need without any 
support or intervention by IT.

Adaptive Analysis

The Mission Critical IT reference provided earlier [11] helps point to the potentials of this paradigm in a 
different way. Mission Critical also shows user interfaces contextually chosen based on prior selections. But they
extend that advantage with context-specific analysis and validation through the SWRL rules-base semantic 
language. This is an exciting extension of the base paradigm that confirms the applicability of this approach to 
business intelligence and general enterprise analytics.

Standing Software Engineering on its Head
All of this points to a very exciting era for enterprise and consumer apps moving into the future. We perhaps 

should no longer talk about “killer apps”; we can shift our focus to the information we have at hand and how we 
want to structure and analyze it.

Using ontologies to write or specify code or to compete as an alternative to conventional software engineering
approaches seems too much like more of the same. The systems basis in which such methodologies such as 
MDA reside have not fixed the enterprise software challenges of decades-long standing. Rather, a shift to generic
applications driven by adaptive ontologies — ODapps — looks to shift the locus from software and 
programming to data and knowledge structures.

This democratization of IT means that everything in the knowledge management realm can become “self 
service.” We can create our own analyses; develop our own reports; and package and disseminate what we and 
our colleagues need, when they need it. Through ontology-driven apps and adaptive ontologies, we can turn 
prior decades of software engineering practices on their head.

What Structured Dynamics and a handful of other vendors are showing is by no means yet complete. Our 
roster of ODapp widgets and templates still needs much filling out. The toolsets available for creating, 
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maintaining, mapping and extending the ontologies underlying these systems are still woefully inadequate [20]. 
These are important development needs for the near term.

And, of course, none of this means the end of software development either. Process and transactions systems 
still likely reside outside of this new, emerging paradigm. Creating great and solid generic ODapps still requires 
software. Further, ODapps and their potential are completely silent on how we create that software and with 
what languages or methodologies. The era of software engineering is hardly at an end.

What is exceptionally powerful about the prospects in ontology-driven apps is to speed time to understanding 
and place information manipulation directly in the hands of the knowledge worker. This is a vision of 
information access and control that has been frustrated for decades. Perhaps, with ontologies and these semantic 
technologies, that vision is now near at hand.
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