
Available Article

Author’s final: This draft is prior to submission for publication, and the
subsequent edits in the published version. If quoting or citing, please refer to the
proper citation of the published version below to check accuracy and pagination.

Cite as: Bergman, M. K. Building Out the System. in A Knowledge Representation
Practionary: Guidelines Based on Charles Sanders Peirce (ed. Bergman, M. K.) 273–
294 (Springer International Publishing, 2018). doi:10.1007/978-3-319-98092-8_13

Official site: https://link.springer.com/book/10.1007/978-3-319-98092-8

Full-text: http://www.mkbergman.com/publications/akrp/chapter-13.pdf

Abstract: Most of the implementation effort is to conceptualize the structure of
the new domain and to populate it with instances . In a proof-of-concept phase,
the least-effort path is to leverage KBpedia or portions of it as is, make few
changes to the knowledge graph, and populate and test local instance data. You
may proceed to create the domain knowledge graph from pruning and additions
to the base KBpedia structure, or from a more customized format.

https://link.springer.com/book/10.1007/978-3-319-98092-8
http://www.mkbergman.com/publications/akrp/chapter-13.pdf

13

BUILDING OUT THE SYSTEM

o, you have looked at the evidence and the prospects, and are now ready to
contemplate moving ahead seriously with a knowledge management installa-

tion. You have some hoped-for target goals in various kinds of analysis or data inter-
operability or knowledge-based artificial intelligence. Where does one begin? What is
the plan? How can one proceed with initial implementation and testing to keep risks
manageable and to demonstrate tangible benefits?

S

These are the topics of this chapter.1 We begin by looking at what is involved in
tailoring a new installation for specific domain purposes. We identify the checklist of
items that you should consider for domain use. We discuss how to conduct an inven-
tory of information assets that we might apply to the instance, and where external
sources and information can contribute. We pay particular attention to how to con-
struct a phased implementation plan based on our own experience with successful
client projects and lessons learned.

We next discuss the critical work tasks of any new domain installation: the cre-
ation of the domain knowledge graph and its population with relevant instance data.
We look at the state-of-the-art in mapping methods and tools, and how we may apply
those tools to these central tasks. We discuss methodologies and some of the publicly
available databases — including those in KBpedia — that may be employed to help fa-
cilitate the new effort. We look at longer-term extensions to the base installation
that we may contemplate as the effort proceeds from a proof-of-concept to a full-
blown knowledge management installation for the enterprise. These factors contrib-
ute to how we can make practical choices to proceed given limited time and budget.

 Besides the context of limited budgets, these efforts have high but uncertain ex-
pectations and a lack of trained creators and users of the system. We know that our
efforts must meet the open-world nature of knowledge so that we can turn that fact
to our advantage. It is just as defensible, and likely easier to implement and test, an
incremental approach to our knowledge domain and data needs. With a pre-defined
starting basis such as KBpedia, we can expand new portions with our domain scope
and vocabulary in a piecemeal manner, tackling only the current new scope of the
specific domain focus at hand, what we call ‘pay as you benefit.’

259

A KNOWLEDGE REPRESENTATION PRACTIONARY

TAILORING FOR DOMAIN USES

Our prior discussions of ‘domain’ make clear that the size and scope of what it
means are flexible, from the minute and focused on to the broad and general, for any
branch of inquiry. Further, in a purposeful, incremental plan, the domain coverage
should also grow and expand. That is one of the beauties of the open-world nature of
knowledge.

Scoping the current domain of interest is thus a central task for any existing plan.
Most of the implementation effort is to conceptualize (in a knowledge graph) the
structure of the new domain and to populate it with instances (data). We also find
that as our domain scope grows, so does the justification and need for more general
knowledge management functions and applications. These general KM tasks, as well
as increased maintenance and testing that should accompany any more widely used
apps, should be added to the roster of task considerations as incremental plans move
forward.

A Ten-point Checklist for Domain Use

Each incremental expansion of the system, including the initial proof-of-concept,
should consider, and incorporate as appropriate, specific points from a ten-point
checklist:

1. Define potential scope, starting place; a starting place wants and needs cham-
pions; the scope is of much lesser importance;

2. Conduct inventory, interview stakeholders, evaluate assets;

3. Develop a phased plan; budget, schedule, and staffing; ID analysis and testing;
define platform and ontologies scope and phasing;

4. Assemble assets (tools, data, structure, vocabularies);

5. Build and test domain ontology;

6. Build out platform;

7. Map and populate data;

8. Conduct and test target analysis;

9. Refine and use KM system; and

10. Document and proselytize results.

You should consult this basic checklist each increment of the plan. Some from this
checklist may be active during any particular increment, others not. However, these
are the general task areas from which to construct the current increment of the plan.
You may also need to formalize certain areas over time, such as documentation now
exposing and describing workflows, or including deployment requirements.

260

BUILDING OUT THE SYSTEM

An Inventory of Assets

Without exception, you must inventory your potential information assets for the
installation. This inventory need not be exhaustive to start, just relevant and appli-
cable to the particular domain space that is your starting or expansion scope. Think
about what is an information asset in this space, and how one finds and uses such in-
formation. Since knowledge workers know their information assets, an essential and
integral requirement is to interview uses when assembling this inventory. It is with
these same interviews that we identify and assemble the domain vocabulary. Discus-
sions should also help identify early champions and possible project team members.

Recall that our system is capable of handling text and documents (unstructured
data), mark-up documents and attribute-value pairs (semi-structured data), and struc-
tured data (database, spreadsheets, tables). Evaluate this possible content for consid-
eration as part of the TBox knowledge graph or as new instance data (ABox). Differ-
ent tests and checks apply to concepts and instances. Concept data comes from glos-
saries, tables of content, thesauri, sometimes bullet lists, or from more formal
schema, such as hierarchies in spreadsheets or relational schema or ontologies. Text
definitions, or links to encyclopedias, or links to specific Web pages, may be desirable
content to add to the characterizations. You may uncover instance in infoboxes,
spreadsheets, data tables, or text records with fixed fields. You should inspect the
record form to identify the types to which the instances belong and their attributes.
Favor complete structure, but gaps are OK given the open nature of knowledge. Text
in the form of labels or semset entries that can accompany instance entries is desir-
able.

I do not advise beginning a KM project premised on paper conversion to digital.
All first-iteration sources should be electronic, with the possible exception of sub-
sumption hierarchies that you might obtain from paper listings or tables of content.
If essential data only resides on paper, this kind of task should only be tackled in
later increments after the basic system has justified itself. In the earliest phases of a
project, avoid unusual formats or data that requires much wrangling or cleaning to
stage for ingesting. Again, if essential, such sources can be tackled in later phases.

I do not advise beginning a KM project where security and access are a concern. I
do recommend that proprietary and restricted access content be included in the ini-
tial inventory and interviewing steps. Early designs can anticipate possible security
expansions, even though you may defer specifics and implementation. Since each im-
plementation increment of the plan involves a new boundary for the domain, it is
also appropriate that an updated inventory be conducted, perhaps putting on to the
table sources that you chose to skip over in earlier phases.

These all constitute possible domain extensions. However, KBpedia and its 55,000
reference concepts and millions of organized instance data, is also available for free.
Many of these also have links to text entries on Wikipedia or Wikidata, supplying
that valuable content form. You may already find much, if not perhaps nearly all, of a
starting skeleton for a given domain in the KBpedia structure.

261

A KNOWLEDGE REPRESENTATION PRACTIONARY

Phased Implementation Tasks and Plan

Too many KM and business intelligence (BI) projects in the past have failed. The
relational schema and its closed logic and brittleness have been one contributor to
this record. Another reason for failure has been too-ambitious scope or expectations.
By embracing open approaches to knowledge, we can also open up a development
path that is phased and incremental. We can let the experience and results of prior
phases justify new phases and expansions.

This philosophy fits well with a proof-of-concept approach, followed by staged
and managed extensions. Repeating methods and continuing to refine tools as part of
this phasing means we are climbing learning curves as more knowledge workers be-
come exposed and facile in the use of the system. Expanding use and input helps pro-
vide continued knowledge and feedback into the plan and how we execute each in-
cremental phase.

In a proof-of-concept phase, the least-effort path would be to leverage KBpedia or
portions of it as is, make few changes to the knowledge graph, and populate and test
local instance data. A next step may be to expand the knowledge graph with still
more instances. As increments occur, consider more KM infrastructure for the sys-
tem to accompany the expansion of domain scope.

Over time the plan should reflect its content and management pipeline. It is im-
portant to design the ability to swap in and out various options at multiple points
from input to desired output. Then, because disparate sources and different formats
must be accommodated, it is also important to use canonical syntaxes and standards
for expressing the products and specifications at the various steps along that pipe-
line. The very notion of pipeline implies workflows, which are the actual drivers for
how we design the pipeline. Evolve key workflow steps to include:

 Clean the input sources;
 Express the sources in a canonical form;2

 Identify and extract concepts;
 Map the structure to KB concepts;
 Identify and extract entities;
 Identify and extract relations;
 Type the entities, concepts, and relations;
 Extract attributes and values for identified entities;
 Add new import and export formats according to the needs of data interoper-

ability and use of third-party analyses, machine learners, and tools;
 Test these against the existing KB;
 Update reference structures, including placement of the new assertions, as ap-

propriate;
 Characterize and log to files;
 Commit to the KB, perhaps through formalized deployment steps; and
 Rinse and repeat.

262

https://en.wikipedia.org/wiki/Learning_curve

BUILDING OUT THE SYSTEM

Much information gets processed in these pipelines, and the underlying sources up-
date frequently. Thus, the pipelines themselves should be designed for performance
and based on solid code with appropriate workflow tagging and management.

Automation, within the demanding bounds of quality, is also an essential scalable
condition. Functional programming languages align well with the data and schema in
knowledge management functions. Ontologies, as structures, also fit well with func-
tional languages. The ability to create DSLs (domain-specific languages) should con-
tinue to improve bringing the knowledge management function directly into the
hands of its users, the knowledge workers. An essential design criterion is to have a
methodology and workflow that explicitly accounts for interoperable and straight-
forward tools, following the scoping guidelines discussed in the previous chapter.
You may need to include and justify specific tasking for any of these aspects in a
given plan increment.

Over the timeframe of multiple increments for a phased project, consider clusters
of work tasks to drawn upon for next increments:

Domain Knowledge Graph

You may start with KBpedia, though eventually, it is desirable to move toward a
tailored domain knowledge graph. You may proceed to create the domain knowledge
graph from prunings and additions to the base KBpedia structure, or from a more
customized format such as the approach recommended in Ontology Development 101.3

Some of your tasks in this area are to: determine the domain and scope of the ontol-
ogy; incorporate domain terminology; consider reusing existing ontologies; enumer-
ate important terms in the ontology; define the types and the class hierarchy, espe-
cially into typologies; and define the attributes of the types. After providing a pre-
ferred label, I encourage you to seek relevant alternative labels (for building the sem-
sets).

The build methodology should re-use ‘standard’ ontologies as much as possible, to
help promote interoperability. The 20 or so core and extended ontologies mapped to
KBpedia are one starting point. To this base, you should add other commonly-used
ontologies or those specific to your domain. You should make identification of these
candidates an explicit part of the information inventory efforts. At a minimum, the
ongoing working knowledge graph should conform to ontology building best prac-
tices (see Chapter 14) and complete enough such that it can be loaded and managed in
an ontology editor or IDE. You can use this working structure with the OWL API for
specialty tools and user maintenance functions.

Instance Data Population

Identifying, staging, transforming, incorporating, and vetting new instance data
should be a continuous set of tasks for the installation. It is less risk to start with sim-
ple data formats populated with clean data. I suggest you cluster new, desired inter-
faces or translators with expansions into entirely new sources of instance data, such
as from external sources or relational databases. Considerations like this can spread

263

https://en.wikipedia.org/wiki/Domain-specific_language
https://en.wikipedia.org/wiki/Functional_programming

A KNOWLEDGE REPRESENTATION PRACTIONARY

needed development and tests over a complete project. A proper inventory of infor-
mation assets will include file types and possible conversion tools for those types
that may exist in the marketplace, preferably as open source. For example, a single
conversion to the system’s canonical format for a tool such as Tika can open up a
thousand new data formats to the system. As a general guideline, it is much less ef -
fort and cost to investigate existing, available options, and then to adapt them to our
data federation design, than it is to write converters from scratch.

For relational systems with large data stores, it may be justified to use third-party
commercial tools for initial staging and conversion. We have had excellent experi-
ence with tools such as Safe Software’s FME; many options exist for high-throughput
situations or where updates are frequent.

Analysis and Content Processing

Each increment should target some form of analysis or content processing as its
design objective. From the platform perspective, that means being able to select ap-
propriate subsets from the knowledge base, process or transform them in some way,
and then submit those results set to an external tool to conduct the designated work.
Per the design philosophy, transformations or submittals of results sets should occur
via an adequately scoped Web service. You should identify each new tool required for
a given design objective, with integration part of the new tasking. Internal communi-
cations should also conform to the canonical data form. Some tasks may also require
injecting analyzed results back into raw Web pages for display or visualization. Other
tasks may need to expand Web pages to enable control and setting of tool parame-
ters. You can also convert or export the information in various forms for direct use
or incorporation into third-party systems.

You may drive visualization systems and specialized widgets using the results sets
obtained from such queries or analysis, in which case you should include such in the
task list. Our methodology also provides for administrative ontologies whose purpose
is to relate structural understandings of the underlying data and data types with
suitable end-use and visualization tools. You may therefore also need to consider
tasks related to creating or modifying the administrative ontologies.

Use and Maintenance

The emerging knowledge system has practical uses including: search, querying,
filtering, discovery, information federation, data interoperability, analysis, and rea-
soning. During use, you may discover many enhancements and improvements. Exam-
ples include improved definitions of concepts; expansions of synonyms, aliases and
jargon (semsets) for concepts and instances; better, more intuitive preferred labels;
better means to disambiguate between competing meanings; missing connections or
excessive connections; and splitting or consolidating of the underlying structure. We
want to see an evolution of tooling and incorporation into existing workflows such
that we make these enhancements as encountered and without major work disrup-

264

https://www.safe.com/integrate/
https://en.wikipedia.org/wiki/Apache_Tika

BUILDING OUT THE SYSTEM

tion. Today, practitioners most often do not pursue such maintenance enhancements
because existing tools do not support such actions. Users and practitioners do not re-
spond well to IDEs and tools geared to ontology engineering. A start small strategy,
of course, lowers risk and is more affordable. However, for effectiveness, you must
design an explicit strategy anticipating extension and expansion. Ontology growth
thus occurs both from learning and discovery and from expanding the scope. Ver-
sioning, version control, and documentation (see below) therefore assume central
importance as the system grows. Any of these items may form a nexus for work tasks
in a given increment of the plan.

Testing and Mapping

As we generate new ontologies, we should test them for coherence against rea-
soning, inference, and other natural language processing tools. We also use gap test-
ing to discover holes or missing links within the resulting ontology graph structure.
Gap testing helps identify internal graph nodes needed to establish the integrity or
connectivity of the concept graph. We may use coherence testing to find missing or
incorrect axioms. Though used for different purposes, we may also use mapping and
alignment tools to identify logical and other inconsistencies in definitions or labels
within the graph structure. Mapping and alignment help establish the links that help
promote ontology and information interoperability. We ask external knowledge
bases to play crucial roles in testing and mapping. Depending on the phase, you may
need to include such tasks for a given plan increment. Mapping is not always a part
of a given increment. However, testing should be a part of all of your increments. In-
clude unit tests for all new tools and converters or further target analyses.

Documentation

Ontologies give us as a way to capture the structure and relationships of a domain
— which is also always changing and growing. We can use further use ontologies to
document their development and versions. We need to apply better tools — such as
vocabulary management and versioning — and better work processes to capture and
record use of our ontologies. We can handle some of these aspects with utilities such
as OWLdoc or wikis for standard knowledge capture and documentation. We have in-
novated many connectors to capture ontology knowledge bases on an ongoing basis.
Still, these are rudimentary steps that we need to enforce with management commit-
ment and oversight. Ongoing use and training demand that we adequately document
the knowledge graphs, ontologies, tools, scripts, and instance record sources that
support a given knowledge installation. Given the lack of tools or best practices in
this area, you will need to commit to and monitor documentation.

MAPPING SCHEMA AND KNOWLEDGE BASES

Two critical work areas in tailoring your implementation are in building out the

265

https://en.wikipedia.org/wiki/Wiki
http://www.co-ode.org/downloads/protege-x/plugins.php#browser

A KNOWLEDGE REPRESENTATION PRACTIONARY

schema (knowledge graph) and populating your installation with instance data. Vari-
ous mapping methods and tools aid these two work areas. Given their importance,
let’s spend a bit of time discussing these work areas in more detail.

Mapping Methods and Tools

Mapping is the definition of a formal correspondence of objects in one knowledge
source with objects in another knowledge source, with the latter most often being
the reference knowledge graph. The correspondence takes the form of assigning a
specific predicate linking an object in an external source to its subject in a reference
source. Some mapping is straightforward; other mappings may be quite hard due to
the vagaries of language and context. Mapping involves specific methods and algo-
rithms to propose candidate matches, as well as tools or applications that embed
these methods in user interfaces and workflows, often with the intent of supporting
the broader mapping purpose. By making the reference knowledge graph the target,
we only need to test the updated graph for coherency and consistency. The reference
knowledge graph grows and changes shape and scope over time as new domain in-
formation is incorporated. Properly mapped external sources can become an integral
part of the domain knowledge graph and participate in inferencing and other rea-
soning tasks.

Though some tout complete automation of mapping as desirable, there is no such
thing, and even small assignment error rates can translate into noticeable errors in
the knowledge base.4 For this reason, we support what we call a ‘semi-automatic’ ap-
proach to mapping. The method involves using multiple methods to score potential
matches, perhaps differentially weighted, and ultimately reviewed and vetted by hu-
man editors before acceptance into the system. The individual review steps are what
make the approach ‘semi-automated,’ though to make that process efficient, it is also
useful to automate away clear mismatches and other problems before the human re-
view of candidates. By automating the process to reduce easily recognized non-can-
didates and score only candidates via the differing methods, we can reduce the num-
ber of uncertain candidates editors need to review. We can also apply this method
for screening candidates for supervised machine learning. Efficiencies and learning
curves should be fed back into the screening tools so that reviewers believe their in-
put is valued and gets reflected in constantly improving tools, two unarguable objec-
tives when mounting a knowledge management initiative.

The mapping methods are varied and tend to reflect the same broad clusters of
semantic heterogeneities as provided by Table 5-1. We may use various ways to clas-
sify these mapping types, but the central options tend to focus on schema, labels/lex-
ical, labels/definitions/semantics, instances, relations, machine learning, or medi-
ated, by using external KBs or thesauri or WordNet. The most straightforward ap-
proaches look only at labels and propose various kinds of string matches. Better ones
look at attributes, external relations, subsumption hierarchies, and the semantics of
labels and concepts. Some of the tools provide multiple methods, and the user may
combine or not multiples of them with user-assigned weights.

266

BUILDING OUT THE SYSTEM

The heyday of tools developed in the areas of ontology alignment, or mapping, or
matching, was in the 2000 to 2005 timeframe. Still, the sophistication and usability of
these tools have continued to improve, even if the pace of new offerings has slowed.
A major driver for these advances has been the annual OAEI (Ontology Alignment
Evaluation Initiative) conference, which has provided a competitive contest and es-
tablished evaluation test sets and criteria on a yearly basis since 2004. My recent sur-
vey specific to ontology mapping identified 30 different existing mapping tools,
many embracing multiple methods, and most open source.5

Building Out the Schema

If you ask most knowledgeable enterprise IT executives what they understand on-
tologies to mean and how to use them, you would likely hear that ontologies are ex-
pensive, complicated and challenging to build. Reactions such as these (and not try-
ing to set up strawmen) result from the relative lack of guidance on how one builds
and maintains these beasties. The use of ontology design patterns is one helpful ap-
proach.6 Such patterns help indicate best design practice for particular use cases and
relationship patterns. However, while such patterns should be part of a general
methodology, they do not themselves constitute a methodology.

The focus here is on domain ontologies, which are descriptions of particular subject
or domain areas. The last known census of ontologies in 2007 indicated there were
more than 10,000 then in existence, though today’s count is likely in excess of
40,000.7 Because of the scope and coverage of these general and domain representa-
tions, and the value of combining them for specific purposes, ontology alignment has
been a topic of practical need and academic research. According to Corcho et al.8 “a
domain ontology can be extracted from special purpose encyclopedias, dictionaries,
nomenclatures, taxonomies, handbooks, special scientific languages (say, chemical
formulas), specialized KBs, and from experts.” Another way of stating this is to say
that a domain ontology — adequately constructed — should also be a faithful repre-
sentation of the language and relationships for those who interact with that domain.

Overview of Approaches

There is a spectrum of approaches for how to conduct these mappings. At the
simplest and least accurate end of the spectrum is string matching methods, some-
times supplemented by regular expression processing and heuristic rules. An inter-
mediate set of methods uses concepts already defined in a knowledge base as a way
to ‘learn’ representations of those concepts; while many techniques exist, two com-
mon ones are explicit semantic analysis and word embedding. Most of these interme-
diate methods require some form of supervised machine learning or other ML tech-
niques. At the more state-of-the-art end of the spectrum are graph embeddings or
deep learning, which also capture context and conceptual relationships as codified in
the graph.

Aside from the string match approaches, all of the intermediate and state-of-the-
art methods use machine learning. Depending on the method, these machine learn-

267

https://en.wikipedia.org/wiki/Ontology_alignment
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Graph_embedding
https://en.wikipedia.org/wiki/Word_embedding
https://en.wikipedia.org/wiki/Explicit_semantic_analysis
https://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Ontology_(information_science)#Domain_ontologies_and_upper_ontologies
http://ontologydesignpatterns.org/wiki/Main_Page
http://oaei.ontologymatching.org/

A KNOWLEDGE REPRESENTATION PRACTIONARY

ers require developing either training sets or corpora as a reference basis for tuning
the learners. These references should be manually scoped, as in the case of training
corpora for unsupervised learning, or manually scored into true and false positives
and negatives (labeled results) for training sets for supervised learning. All of these
techniques are useful, but you should, in any case, supplement them with logic tests
and scripts to test coherence and consistency issues that may arise. You should test
the coherency of the target knowledge graph after any new mappings.

Practitioners of ontology development have been documenting approaches since
at least Jones et al. in 1998.9 That early study outlined common steps and noted typi-
cal stages to produce first an informal description of the ontology and then its formal
embodiment in an ontology language. The existence of these two descriptions is an
important characteristic of many ontologies, with the informal description often car-
rying through to the formal description. Corcho et al. did the next major survey in
2003.8 This built on the earlier Jones survey and added more recent methods. The
survey also characterized the methods by tools and tool readiness. More recently the
work of Simperl and her colleagues has focused on empirical results of ontology cost-
ing and related topics. This series has been the richest source of methodology insight
in recent years.10 11 12 Though not a survey of methods, one of the more attainable de-
scriptions of ontology building is Noy and McGuinness’ well-known Ontology Develop-
ment 101.3

Another way to learn more about ontology construction is to inspect some exist-
ing ontologies. Though one may use a variety of specialty search engines and Google
to find ontologies,13 some current repositories also deserve inspection. Examples in-
clude the University of Manchester, VIVO, TONES, the Protégé ontology library, the
Linked Open Vocabularies (LOV), the NanJing Vocabulary Repository, the Online On-
tology Set Picker (OOSP), and the OBO (biomedical) Foundry. An older, but similar,
repository is OntoSelect. Another way to learn about ontology construction is from a
bottom-up perspective. In this regard, the Ontology Design Patterns (ODP) wiki is a
source of building patterns and exemplary ontologies. ODP is not likely the first place
to turn to and does not give ‘big picture’ guidance, but it also should be a book-
marked reference once you begin real ontology development.

For the last twenty years, there have been many methods put forward for how to
develop ontologies. Though new methodology developments have diminished some-
what in recent years, our reviews suggest this is the current state of ontology devel-
opment methodologies:

 Very few uniquely different methods exist, and those that do are relatively
older in nature;

 The methods tend to either cluster into incremental, iterative ones or those
more oriented to comprehensive approaches;

 There is a general logical sharing of steps across most methodologies from as-
sessment to deployment and testing and refinement;

 Actual specifics and flowcharts are quite limited; except the UML-based sys-

268

http://en.wikipedia.org/wiki/Unified_Modeling_Language
http://ontologydesignpatterns.org/wiki/Ontology:Main
http://ontologydesignpatterns.org/wiki/Main_Page
http://olp.dfki.de/ontoselect/
http://www.obofoundry.org/
http://owl.vse.cz:8080/OOSP/
http://ws.nju.edu.cn/njvr/
http://lov.okfn.org/dataset/lov/
https://protegewiki.stanford.edu/wiki/Protege_Ontology_Library#OWL_ontologies
http://owl.cs.manchester.ac.uk/repository/
http://swl.slis.indiana.edu/repository/
http://owl.cs.manchester.ac.uk/tools/repositories/
https://en.wikipedia.org/wiki/Supervised_learning
https://en.wikipedia.org/wiki/Unsupervised_learning

BUILDING OUT THE SYSTEM

tems, most appear not to meet enterprise standards;

 Discussion of supporting toolsets is often lacking, and most of the examples, if
even provided, are based solely on a single or governing tool. Tool integration
and interoperability is almost non-existent in narratives; and

 Development methodologies are not as active an area of recent research.

While there is by no means unanimity in the community, we can see some con-
sensus from these prior reviews.14 We have taken these consensus items and added to
them some points from our experience, resulting in these eight general guidelines
for what you should consider in a domain ontology:

 Be lightweight and modular;
 Use reference structures;
 Re-use existing structure;
 Build incrementally;
 Use simple predicates;
 Test for logic and consistency;
 Map to external ontologies; and
 Map reciprocally.

I expand further on these points in the next sections.

Some Design Guidelines

Effective ontology development is as much as anything a matter of mindset. This
mindset is grounded in leveraging what already exists, ‘paying as one benefits’ (see
below) through an incremental approach, and starting simple and adding complexity
as we gain understanding and experience. Inherently this approach requires domain
users to drive ongoing development with appropriate tools to support that emphasis.
Ontologists and ontology engineering are important backstops, but not in the lead
design or development roles. The net result of this mindset is to develop pragmatic
ontologies that are understood — and used by — actual domain practitioners. Let’s
look more closely at the individual design guidelines just listed to see what goes into
this mindset.

1. BE LIGHTWEIGHT AND MODULAR

Begin with a lightweight, domain ontology,15 which is hierarchical or classificatory in
nature. Ontologies built for the pragmatic purpose of interoperating different con-
texts and data should start lightweight with only a few predicates, such as subClas-
sOf, isAbout, narrowerThan or broaderThan. If done properly, these lighter weight
ontologies with more limited objectives can be surprisingly robust in discovering
connections and relationships. Moreover, they are a logical and doable intermediate
step on the path to more demanding semantic analysis. Because we have this per-
spective, we also tend to rely heavily on the SKOS vocabulary for many of our ontol-

269

A KNOWLEDGE REPRESENTATION PRACTIONARY

ogy constructs16 and use typologies in our overall design
Provide balanced coverage of the subject domain. The breadth and depth of the

coverage in the ontology should be roughly equivalent across its scope. Build modular
ontologies that split your domain and problem space into logical clusters. Try to split
domain concepts from instance records structurally. Concepts represent the nodes within
the structure of the ontology (also known as classes, types, or the TBox). Instances
represent the data that populates that structure (also known as entities, individuals,
or the ABox). Use disjoint classes to separate classes from one another where the logic
makes sense, and let dissimilarities guide the bounding of types in the first place. An
architecture of multiple ontologies often works together to isolate different work
tasks to aid better ontology management. Also, try to use a core set of primitives to
build up more complex parts. This approach is a kind of reuse within the same ontol-
ogy, as opposed to reusing external ontologies and patterns. The corollary to this is
that the same concepts should not be created independently multiple times in differ-
ent places. Adhering to these practices is akin to object-oriented programming.

Try to think of your knowledge graph as also providing context, by explicitly con-
sidering what the best way is to describe what your content ‘is about.’ A good gauge
for whether the context is adequate is whether one has sufficient concept definitions
to disambiguate common concepts in the domain. As we add relationships and the
complexities of the world get further captured, ontologies migrate from the light-
weight to a more ‘heavyweight’ end of the spectrum.

2. USE REFERENCE STRUCTURES

One benefit is that reference structures of any kind provide a focus, by definition,
of common or canonical referents. This commonality leads to better defined, better
understood and more widely used referents. Common referents become a kind of
common vocabulary for the space, upon which other vocabularies and datasets can
depend. A common language, of sorts, can begin to emerge. Reference structures also
provide a grounding, a spoke-and-hub design, that leads to an efficient basis for ex-
ternal vocabularies and datasets to refer to one another. Of course, any direct map-
ping can provide a means to relate this information, but such pairwise mappings are
not scalable nor efficient. In a spoke-and-hub design, the number of mappings re-
quired goes down significantly with the number of datasets or items requiring map-
ping. The spoke-and-hub design,17 for example, is at the heart of such disciplines as
master data management. Another benefit of common reference structures is that
they provide a common target for the development of tools and best practices. These
kinds of ‘network effects’ lead to still further tooling and practices.

3. RE-USE EXISTING STRUCTURE

Reuse structure and vocabularies as much as possible. Fundamental to the whole
concept of coherence is the fact that domain experts and practitioners have been
looking at the questions of relationships, structure, language, and meaning for
decades. Massive time and effort have already been expended to codify some of these

270

https://en.wikipedia.org/wiki/Network_effect
http://en.wikipedia.org/wiki/Object-oriented_programming

BUILDING OUT THE SYSTEM

understandings in various ways and at multiple levels of completeness and scope. A
short list of these potential sources demonstrates the treasure trove of structure and
vocabularies available to any enterprise for re-use: Web portals; databases; relational
database schema; industry specifications and standards; spreadsheets; informal lists;
legacy schema; metadata; taxonomies; controlled vocabularies; ontologies; master
data (MDM) directories and catalogs; exchange formats, etc. Metadata and available
structure may have value no matter where or how it exists, and a fundamental aspect
of the build methodology is to bring such candidate structure into a standard tools
environment for inspection and testing. It is wasteful to ignore prior investments
that have been used to characterize or organize information assets.

We closely relate this guidance to our earlier advocacy that you should accom-
pany each incremental phase of development with an update to the information in-
ventory. The most productive methodologies for modern ontology building are those
that re-use and reconcile prior investments in structural knowledge, not ignore
them. These existing assets take the form of already proven external ontologies and
internal and industry structures and vocabularies. Besides assembling and reviewing
current sources, those selected for re-use must be migrated and converted to a
proper ontological form (OWL in our case). Others have demonstrated some of these
techniques for prior patterns and schema.18 15 In other instances, you may employ
various converters or scripts to conduct the migration. Many tools and options exist
at this stage, even though as a formal step, practitioners often neglect this conver-
sion.

4. BUILD INCREMENTALLY

 Build ontologies incrementally. Much value can be realized by starting small, be-
ing simple, and emphasizing the pragmatic. It is OK to make those connections that
are doable and defensible today while delaying until later the full scope of semantic
complexities associated with complete data alignment. An open world approach pro-
vides the logical basis for incremental growth and adoption of ontologies. You need
to repeat the process of modifying a working ontology, testing it, maintaining it, and
then revising and extending it over multiple increments. In this manner, the deploy-
ment proceeds and gets refined as learning occurs. Importantly, too, this approach
also means that complexity, sophistication, and scope only grow consistent with
demonstrable benefits. Thus, in the face of typical budget or deadline constraints,
you may initially scope domains smaller or provide less coverage in depth or use a
smaller set of predicates, all the while still achieving productive use of the ontology.

5. USE SIMPLE PREDICATES

Define unambiguous predicates (also known as properties, relationships, at-
tributes, edges or slots), including a precise definition. Then, when relating two
things to one another, use care in actually assigning these properties. Initially, as-
signments should start with a logical taxonomic or categorization structure and ex-
pand from there into more nuanced predicates. Though not involved in any reason-

271

A KNOWLEDGE REPRESENTATION PRACTIONARY

ing, aggressively use annotation properties to promote the usefulness and human read-
ability of the ontology, as well as to provide text support for the better characteriza-
tion of entities and concepts.

Assign domains and ranges to your properties. Domains apply to the subject (the
left-hand side of a triple), ranges to the object (the right-hand side of the triple). You
should not view domains and ranges as real constraints, but as axioms used by rea-
soners. In general, the domain for a property is the range for its inverse and the
range for a property is the domain of its inverse. (You can envision this by under-
standing that domain applies to the subject, while range applies to the object. If you
invert these roles, domain and range switch.) Use of domains and ranges will assist
testing and help ensure the coherency of your ontology. Assign property restrictions,
but do so sparingly and judiciously. Use of property restrictions will also support
testing and provides possibly new features to machine learners.

6. TEST FOR LOGIC AND CONSISTENCY

 We must always test our knowledge graphs for logic, consistency, completeness,
and coherence. Test each increment; no official or public release should be made that
does not pass all tests. As we learn, we should continue to add to the comprehensive-
ness of our tests. We test logic as we build with inference engines and reasoners. We
look for completeness and consistency regarding standard ontology errors, such as
what the tool OOPS! helps identify,19 and follow our best practices for completeness
and the use of semsets.

The essence of coherence is that it is a state of logical, consistent connections, a
logical framework for intelligently integrating diverse elements. So while context
supplies a reference structure, coherence means that the structure makes sense. Is
the hip bone connected to the thigh bone, or is the skeleton askew? Coherence
means that we draw the right connections (edges or predicates) between the right
object nodes (or content) in the graph. Relating content coherently itself demands a
coherent framework. At the upper reference layer, this begins with KBpedia, which
begins as a coherent structure. If KBpedia continues as the basis for the modified do-
main ontology, and if incremental changes are tested for logic and consistency as
they occur, then you should be able to continue to evolve the domain knowledge
graph coherently. Absent starting reference structures, it is tough to create a cohe-
sive starting knowledge graph, since any new assertion may not have been encoun-
tered in a related form before.

7. MAP TO EXTERNAL ONTOLOGIES

Mapping to external ontologies increases the likelihood of sharing and interoperabil-
ity, but importantly from an ontology building perspective, also helps to identify
gaps or errors in the reference knowledge graph. Mapping helps expose the impor-
tance of ‘punning,’ since depending on use or context, we may want to treat a given
concept as either a class or instance. Given our domain and our interoperability
goals, we likely want to rely on a set of core ontologies for external re-use purposes. For

272

http://oops.linkeddata.es/

BUILDING OUT THE SYSTEM

interoperability purposes, we also want to write our ontologies in machine-processable
languages such as OWL or RDF Schema.

Building Out the Instances (Knowledge Bases)

The conceptual and logical demands for adding instances are different in scope
and kind than that for the conceptual knowledge graph. When adding instances, en-
sure the quality of the input data with reliable provenance; you may be required to
justify your sources. An attributes ontology, embedded as one of the backbones in
KBpedia, is a useful starting place to map data attributes and characteristics. We
grow and mature the reference structure for this using similar considerations as to
what we followed for the overall knowledge graph, including logic and consistency
tests (though they will be of a different character, more akin to data validation).
When adding instances, it is essential you relate all entities to a type and pay atten-
tion to other aspects of the instance’s data record that may be useful to include as
disambiguation cues.

In building out and then using instance data, we can see a cycle of ten or so broad
guidelines. Note that I refer to the input instance source as a knowledge base,
though, of course, any instance data repository may be a source. A relational data
store, for example, would follow these guidelines, but also would need to go through
some form of relational to RDF converter. Other types of data stores may impose sim-
ilar wrinkles.

Here are the ten guidelines for building out instances:

1. UPDATE CHANGING KNOWLEDGE

We need to ensure that the input knowledge bases to the overall domain knowl-
edge structure are current and accurate. Don’t start with dated material! Depending
on the nature of the KM system, there may be multiple input KBs involved, each de-
manding updates. Besides capturing the changes in the base information itself, many
of the steps below may also be required to process this changing input knowledge
correctly.

2. PROCESS THE INPUT KBS

Process the input KBs to be machine-readable. We also desire processing to ex-
pose features for machine learners and to do other clean up of the input sources,
such as removal of administrative categories and articles, cleaning up category struc-
tures, consolidating similar or duplicative inputs into canonical forms, and the like.
This step is highly contextual, and may require multiple steps or scripting.

3. INSTALL, RUN AND UPDATE THE SYSTEM

The KBs themselves reside on their host databases or triple stores. Each of the
processing steps may have functional code or scripts associated with it. All general

273

http://en.wikipedia.org/wiki/RDF_Schema
http://en.wikipedia.org/wiki/Web_Ontology_Language

A KNOWLEDGE REPRESENTATION PRACTIONARY

management systems should be installed, kept current, and secured. The manage-
ment of system infrastructure sometimes requires a staff of its own, let alone install,
deploy, monitoring and update systems. It is here that we may need to add specific
source converters to the system.

4. TEST AND VET PLACEMENTS

New entities and types added to the knowledge base should be placed into the
overall knowledge graph and tested for logical placement and connections. Though
we should manually verify final placements, the sheer number of concepts in the sys-
tem places a premium on semi-automatic tests and placements. Placement metrics
are also valuable to help screen candidates. This task area requires similar tools and
user interfaces, plus incorporation into existing workflows, as is required for concept
placements into the governing knowledge graph.

5. TEST AND VET MAPPINGS

If we add new types or concepts to the governing knowledge graph, then these
should be tested and mapped with appropriate mapping predicates to external or
supporting KBs. Any new mappings to the base KB should be re-investigated and con-
firmed.

6. TEST AND VET ASSERTIONS

Testing does not end with placements and mappings. Attributes and values often
characterize concepts; sometimes we may give them internal assignments as Super-
Types; and, we must test all new assertions against what already exists in the KB.
Though the tests may individually be straightforward, thousands may require test-
ing, and cross-consistency is vital if one is adding large instance stores. Each of these
assertions is subject to unit tests.

7. ENSURE COMPLETENESS

Our standard practice calls to accompany each new concept in the KB with a defi-
nition, complete characterization and connections, and synonyms or semsets to aid
in natural language tasks. If updates are periodic or scheduled, as opposed to one-
time batch incorporation, then we recommend writing scripts for the appropriate
tests. Any activity that we can reasonably anticipate to occur three times or more de-
serves scripting attention.

8. TEST AND VET COHERENCE

As we build and extend the broader structure, we apply system tests to ensure the
overall graph remains coherent. We address and correct outliers, orphans, and frag-
ments when encountered. We do some of this testing via component typologies, and
some we do using various network and graph analyses. You should flag possible

274

BUILDING OUT THE SYSTEM

problems and document or present them for manual inspection. Like other manual
vetting requirements, confidence scoring and ranking of issues and candidates helps
speed up this screening process.

9. GENERATE TRAINING SETS

A key objective of populating our knowledge system with instance data is to en-
able the rapid creation of positive and negative training sets for machine learning.
We need to generate candidates; they should be scored and tested; and, we need to
vet their final acceptance. Once vetted, we may need to express the training sets in
different formats or structures (such as finite state transducers, one of the tech-
niques we often use) for them to perform well in actual analysis or use. Since ma-
chine learners may require many iterations to refine input parameters, your script-
ing attention is certainly required here.

10. TEST AND VET LEARNERS

We can then apply machine learners to the various features and training sets pro-
duced by the system. Each learning application involves the testing of one or more
learners; the varying of input feature or training sets; and the testing of various pro-
cessing thresholds and parameters (including possibly white and blacklists). This set
of requirements is one of the most intensive on this listing, and requires you to docu-
ment test results, alternatives tested, and other observations useful to a cost-effec-
tive application.

RINSE AND REPEAT

Each of these ten steps is not a static event. Instead, given the constant change in-
herent in knowledge sources, including the ongoing addition of new instances, we
must repeat the entire workflow on a periodic basis. The inexorable pull is to auto-
mate more steps and generate more documentation to reduce the tension between
updating effort and current accuracy. A lack of automation leads to outdated systems
because of the effort and delays in updates. The imperative for automation, then, is a
function of the change frequency in the input KBs or the use of learners.

‘PAY AS YOU BENEFIT’

As best as I can tell, Alon Halevy was the first to use the phrase ‘pay as you go’ in
2006 to describe the incremental aspect of the open world approach applied to the
semantic Web.20 Others had earlier applied the ‘pay as you go’ phrase to data man-
agement and storage; it had also been used to describe phone calling plans. Unfortu-
nately, the ‘pay as you go’ phrase has (and still is) largely confined to incremental,
open world approaches involving the semantic Web. Nonetheless, I like the phrase,
and I think it evokes the right mindset. In fact, I think with linked data and many
other aspects of the current semantic Web we see such approaches come to fruition.

275

http://en.wikipedia.org/wiki/Pay_as_you_go
https://en.wikipedia.org/wiki/Alon_Halevy
https://en.wikipedia.org/wiki/Finite_state_transducer

A KNOWLEDGE REPRESENTATION PRACTIONARY

Inch-by-inch, brick-by-brick, we see useful data on the Web getting exposed and in-
terlinked. ‘Pay as you go’ is incremental, and that is good.

Still, I think we can express this idea better. The idea of ‘pay as you benefit’ more
directly ties the question of project funding and project staging to project benefits. It
ties directly into the open nature of knowledge and dovetails nicely with the re-
peated recommendations to implement your knowledge management initiatives in-
crementally. The idea of ‘pay as you benefit’ is purposeful, and may be planned and
implemented on standard enterprise cost-benefit principles.1 What the ‘pay as you
benefit’ idea means is you can start small and be incomplete. You can target any do-
main or department or scope that is most useful and illustrative for your organiza-
tion. You can deploy your first stand-ups as proofs-of-concept or sandboxes. More-
over, you can build on each prior step with each subsequent one. Of course, you must
communicate with stakeholders to get this message out and to overcome the glazed
eyes that might accompany the terminology of knowledge management and ontolo-
gies. ‘Pay as you benefit’ is a guiding pragmatic principle for how you can build out
your domain knowledge management system. So, how does one move ahead with a
‘pay as you benefit’ strategy?

Placing the First Stake

The first step is always the hardest on a new journey. We can minimize risk by
planning an incremental roll-out and scoping and bounding our first step carefully,
but it is still important the first step be successful to move the journey forward. I
have discussed elsewhere the wisdom of designing the first step for success, and to
limit unneeded or risky development. Leveraging existing KBpedia assets as supple-
mented by your domain instance data is one way to bound this risk.

The players in the first step of a KM initiative should be those with a need and
who are supportive. It is perhaps essential that the initial team include champions,
who are smart and willing to learn. We need to spread the seeds of knowledge man-
agement on fertile ground, which also has some visibility to other portions of the or-
ganization. We almost assuredly bake in failure when we attempt such initiatives too
broadly or without local support. Because of the shortcomings of past ‘solutions’
such as BI or data warehousing, we also see a decline and a reluctance for IT to em-
brace new and transforming approaches. These considerations argue strongly for
embedding first stakes in a KM project within a department or group directly in-
volved in knowledge work or management. KM projects are almost always of some
threat to IT departments as they presently understand their role. As a general rule,
do not attempt to start KM projects there, and expect resistance and naysaying from
some in IT.

1 Including, of course, explicit attempts to model intangible benefits realistically.

276

BUILDING OUT THE SYSTEM

Incremental Build Outs Follow Benefits

We make much of ‘incremental’ or ‘agile’ deployments within enterprises, but the
nature of the traditional data system (and its closed world assumption) can act to un-
dermine these laudable steps. The inherent nature of an open world approach,
matched with methodologies and best practices, can work wonderfully with KM-re-
lated projects. We have seen how we can incrementally stage our phases, moving
into more complicated and enterprise-visible areas over time.

Learn to Quantify and Document Benefits

The grounding of a KM system in the information that knowledge workers have,
how they presently conduct their work, and what they need to improve it, provides
the same bases for documenting benefits from a new initiative. You should document
current practices to capture and model workflows, and you should record time and
effort associated with ongoing work tasks. These are the required metrics to show
whether KM initiatives are improving productivity or not and, if so, by how much.
(Of course, you need to measure and document benefits as well.) These kinds of con-
siderations should be central in the design of a KM initiative because, without you
collecting and monitoring such data, it will be impossible to project the documented
savings and improvements needed to justify ongoing commitments. James Hendler
once stated that “a little semantics goes a long way.”21 That truth — and it is true —
when combined with incremental deployment firmly tied to demonstrable results,
promises a different way to do business.

Chapter Notes
1. Some material in this chapter was drawn from the author’s prior articles at the AI3:::Adaptive Information

blog: “Open SEAS: A Framework to Transition to a Semantic Enterprise" (Mar 2010); “‘Pay as You Benefit’: A
New Enterprise IT Strategy" (Jul 2010); “A Brief Survey of Ontology Development Methodologies" (Aug
2010); “A New Methodology for Building Lightweight, Domain Ontologies" (Sep 2010); “Research Shows Nat-
ural Fit between Wikipedia and Semantic Web" (Oct 2008); “Shaping Wikipedia into a Computable Knowl-
edge Base" (Mar 2015); “Reciprocal Mapping of Knowledge Graphs" (Feb 2017).

2. Galárraga, L., Heitz, G., Murphy, K., and Suchanek, F. M., “Canonicalizing Open Knowledge Bases,” ACM
Press, 2014, pp. 1679–1688.

3. Noy, N. F., and McGuinness, D. L., Ontology Development 101: A Guide to Creating Your First Ontology, Stanford
University Knowledge Systems Laboratory, 2001.

4. As Chapter 14 explains, an F1 score of 95% is still based on an annotator agreement basis of perhaps 70-80%,
which means an actual F1 score error rate of, say, 65%. With 10 million assertions, this translates into as
many as 3.5 million being in error. Were actual F1 scores at 95%, that still means 500,000 errors.

5. Bergman, M. K., “30 Active Ontology Alignment Tools,” AI3:::Adaptive Information Available: http://www.mk-
bergman.com/?p.

6. OntologyDesignPatterns.org (http://ontologydesignpatterns.org/wiki/Main_Page) is a semantic Web portal
dedicated to ontology design patterns (ODPs). The portal was started under the NeOn project in 2009.

7. A simple Web search of https://www.google.com/search?q=filetype:owl (OWL is the Web Ontology Lan-
guage, one of the major ontology formats) shows nearly 39,000 results. Still, multiple ontology languages

277

A KNOWLEDGE REPRESENTATION PRACTIONARY

are available, such as RDF, RDFS, and others (though use of any of these languages does not necessarily im-
ply the artifact is a vocabulary or ontology).

8. Corcho, O., Fernandez, M., and Gomez-Perez, A., “Methodologies, Tools and Languages for Building Ontolo-
gies: Where is the Meeting Point?,” Data & Knowledge Engineering 46, 2003.

9. Jones, D. M., Bench-Caponand, T. J. M., and Visser, P. R. S., “Methodologies for Ontology Development,” Pro-
ceedings of the IT and KNOWS Conference of the 15th FIP World Computer Congress, 1998.

10. Simperl, E. P. B., and Tempich, C., “Ontology Engineering: A Reality Check,” On the Move to Meaningful Inter-
net Systems, Springer, 2006, pp. 836–854.

11. Simperl, E., Tempich, C., and Vrandečić, D., “A Methodology for Ontology Learning,” Frontiers in Artificial In-
telligence and Applications 167 from the Proceedings of the 2008 Conference on Ontology Learning and Population:
Bridging the Gap between Text and Knowledge, 2008, pp. 225–249.

12. Simperl, E. P. B., Tempich, C., and Sure, Y., “ONTOCOM: A Cost Estimation Model for Ontology Engineering,”
The Semantic Web - ISWC 2006, I. Cruz, S. Decker, D. Allemang, C. Preist, D. Schwabe, P. Mika, M. Uschold, and
L.M. Aroyo, eds., Berlin, Heidelberg: Springer, 2006, pp. 625–639.

13. Specialty search engines for ontologies include Swoogle, FalconS, Watson, Sindice, and SWSE. In addition,
one can use a general search engine such as Google with a search query such as <topic> owl:equivalentClass
filetype:owl. Note the filetype might also include RDF or a variant such as N3, we can substitute other lan-
guage-specific constructs of interest for owl:equivalentClass.

14. Simperl, E., Mochol, M., and Burger, T., “Achieving Maturity: the State of Practice in Ontology Engineering
in 2009,” International Journal of Computer Science and Applications, vol. 7, 2010, pp. 45–65.

15. Giunchiglia, F., Marchese, M., and Zaihrayeu, I., “Encoding Classifications into Lightweight Ontologies,” Pro-
ceedings of the 3rd European Semantic Web Conference (ESWC, 2006.

16. SKOS Simple Knowledge Organization System Reference: W3C Recommendation, World Wide Web Consortium, 2009.

17. The main advantage of a grounding reference is that it allows a spoke-and-hub design for data mapping,
which is tremendously more efficient than pairwise mappings. In a spoke-and-hub design, where the refer-
ence ontology is the common node at the hub, only n – 1 routes are necessary to connect all sources, mean-
ing that it scales linearly with the number of sources and attributes. Without a grounding reference, these
same mapping capabilities would require routes in a pairwise (point-to-point) approach, which also scales
poorly as a quadratic function. A system of ten datasets would require n(n-1)/2 composite mappings in the
reference grounding case, but 45 in a pairwise approach. Of course, datasets themselves contain tens to
thousands of attributes, compounding the map scaling problem further.

18. van Assem, M., Malaisé, V., Miles, A., and Schreiber, G., “A Method to Convert Thesauri to SKOS,” The Seman-
tic Web: Research and Applications, Y. Sure and J. Domingue, eds., Berlin, Heidelberg: Springer, 2006, pp. 95–
109.

19. Poveda Villalón, M., “Ontology Evaluation: A Pitfall-Based Approach to Ontology Diagnosis,” Ph.D., Universi-
dad Politécnica de Madrid, ETSI_Informatica, 2016.

20. Halevy, A., Franklin, M., and Maier, and D., “Principles of Dataspace Systems (PODS),” Proceedings of ACM
Symposium on Principles of Database Systems, 2006, pp. 1–9.

21. James Hendler, “a little semantics goes a long way.” See http://www.cs.rpi.edu/~hendler/LittleSemantic-
sWeb.html.

278

	Structure of the Book 2
	Overview of Contents 3
	Key Themes 9
	What is Information? 15
	What is Knowledge? 25
	What is Representation? 32
	Information and Economic Wealth 45
	Untapped Information Assets 53
	Impediments to Information Sharing 60
	KM and A Spectrum of Applications 66
	Data Interoperability 68
	Knowledge-based Artificial Intelligence 74
	Equal Class Data Citizens 86
	Addressing Semantic Heterogeneity 90
	Carving Nature at the Joints 96
	A Foundational Mindset 107
	Firstness, Secondness, Thirdness 111
	The Lens of the Universal Categories 116
	Things of the World 129
	Hierarchies in Knowledge Representation 132
	A Three-Relations Model 140
	Logical Considerations 149
	Pragmatic Model and Language Choices 159
	The KBpedia Vocabulary 162
	The Context of Openness 176
	Information Management Concepts 184
	Taming a Bestiary of Data Structs 191
	Types as Organizing Constructs 197
	A Flexible Typology Design 204
	KBpedia’s Typologies 207
	Graphs and Connectivity 216
	Upper, Domain and Administrative Ontologies 224
	KBpedia’s Knowledge Bases 229
	Uses and Work Splits 238
	Platform Considerations 248
	A Web-oriented Architecture 253
	Tailoring for Domain Uses 260
	Mapping Schema and Knowledge Bases 265
	‘Pay as You Benefit’ 275
	A Primer on Knowledge Statistics 279
	Builds and Testing 287
	Some Best Practices 292
	Near-term Potentials 304
	Logic and Representation 310
	Potential Methods and Applications 315
	Workflows and BPM 325
	Semantic Parsing 331
	Cognitive Robotics and Agents 343
	The Sign and Information Theoretics 352
	Peirce: The Philosopher of KR 353
	Reasons to Question Premises 356
	Peirce, The Person 364
	Peirce, The Philosopher 367
	Peirce, The Polymath 375
	An Obsession with Terminology 379
	Peirce, The Polestar 381
	Resources About Peirce 382
	Components 390
	Structure 393
	Capabilities and Uses 398
	Preface
	Introduction
	Structure of the Book
	Overview of Contents
	Key Themes

	Information, Knowledge, Representation
	What is Information?
	Some Basics of Information
	The Structure of Information
	Forms of Structure
	Some Structures are More Efficient
	Evolution Favors Efficient Structures
	The Meaning of Information

	What is Knowledge?
	The Nature of Knowledge
	Knowledge as Belief
	Doubt as the Impetus of Knowledge

	What is Representation?
	The Shadowy Object
	Three Modes of Representation
	Peirce’s Semiosis and Triadomany
	Knowledge Representation in Context

	The Situation
	Information and Economic Wealth
	The X Factor of Information
	Knowledge and Innovation

	Untapped Information Assets
	Valuing Information as an Asset
	Lost Value in Information
	The Information Enterprise

	Impediments to Information Sharing
	Cultural Factors
	Tooling and Technology
	Perspectives and Priorities

	The Opportunity
	KM and A Spectrum of Applications
	Some Premises
	Potential Applications
	A Minimal Scaffolding

	Data Interoperability
	The Data Federation Pyramid
	Benefits from Interoperability
	A Design for Interoperating

	Knowledge-based Artificial Intelligence
	Machine Learning
	Knowledge Supervision
	Feature Engineering

	The Precepts
	Equal Class Data Citizens
	The Structural View
	The Formats View
	The Content View

	Addressing Semantic Heterogeneity
	Sources of Semantic Heterogeneity
	Role of Semantic Technologies
	Semantics and Graph Structures

	Carving Nature at the Joints
	Forming ‘Natural’ Classes
	A Mindset for Categorization
	Connections Create Graphs
	A Grammar for Knowledge Representation

	The Universal Categories
	A Foundational Mindset
	A Common Grounding in Peirce
	Truth is Testable and Fallible
	Upper Ontologies, Context, and Perspective
	Being Attuned to Nature

	Firstness, Secondness, Thirdness
	Constant Themes of Three
	Summary of the Universal Categories
	The Irreducible Triad

	The Lens of the Universal Categories
	An Aha! Moment
	Grokking the Universal Categories
	Applying the Universal Categories
	The Categories and Categorization

	A KR Terminology
	Things of the World
	Entities, Attributes, and Concepts
	What is an Event?

	Hierarchies in Knowledge Representation
	Types of Hierarchical Relationships
	Structures Arising from Hierarchies

	A Three-Relations Model
	Attributes, the Firstness of Relations
	External Relations, the Secondness of Relations
	Representations, the Thirdness of Relations
	The Basic Statement

	KR Vocabulary and Languages
	Logical Considerations
	First-order Logic and Inferencing
	Deductive Logic
	Inductive Logic
	Abductive Logic
	Redux: The Nature of Knowledge
	Particulars, Generals, and Description Logics

	Pragmatic Model and Language Choices
	RDF: A Universal Solvent
	OWL 2: The Knowledge Graph Language
	W3C: Source for Other Standards

	The KBpedia Vocabulary
	Structured on the Universal Categories
	Three Main Hierarchies
	The Instances Vocabulary
	The Relations Vocabulary
	Attributes Relations (1ns)
	External Relations (2ns)
	Representation Relations (3ns)

	The Generals (KR Domain) Vocabulary
	Other Vocabulary Considerations
	Components of Knowledge Representation

	Keeping the Design Open
	The Context of Openness
	An Era of Openness
	The Open World Assumption
	Open Standards

	Information Management Concepts
	Things, Not Strings
	The Idea and Role of Reference Concepts
	Punning for Instances and Classes

	Taming a Bestiary of Data Structs
	Rationale for a Canonical Model
	The RDF Canonical Data Model
	Other Benefits from a Canonical Model

	Modular, Expandable Typologies
	Types as Organizing Constructs
	The Type-Token Distinction
	Types and Natural Classes
	Very Fine-Grained Entity Types

	A Flexible Typology Design
	Construction of the Hierarchical Typologies
	Typologies are Modular
	Typologies are Expandable

	KBpedia’s Typologies
	Full Listing of Typologies
	‘Core’ Typologies
	Tailoring Your Own Typologies

	Knowledge Graphs and Bases
	Graphs and Connectivity
	Graph Theory
	The Value of Connecting Information
	Graphs as Knowledge Representations

	Upper, Domain and Administrative Ontologies
	A Lay Introduction to Ontologies
	Ontologies are A Family of Graphs
	Incipient Potentials
	Good Ontology Design and Construction

	KBpedia’s Knowledge Bases
	KBpedia KBs
	Primary KBs
	Secondary KBs
	Candidate KBs for Expansion
	Building KR Systems

	Platforms and Knowledge Management
	Uses and Work Splits
	The State of Tooling
	TBox, ABox, and Work Splits
	Content Workflows

	Platform Considerations
	Supporting Multiple Purposes
	Search
	Knowledge Management
	An Ontologies-based Design
	Enterprise Considerations

	A Web-oriented Architecture
	Web-orientation and Standards
	A Modular Web Services Design
	An Interoperability Architecture

	Building Out The System
	Tailoring for Domain Uses
	A Ten-point Checklist for Domain Use
	An Inventory of Assets
	Phased Implementation Tasks and Plan
	Domain Knowledge Graph
	Instance Data Population
	Analysis and Content Processing
	Use and Maintenance
	Testing and Mapping
	Documentation

	Mapping Schema and Knowledge Bases
	Mapping Methods and Tools
	Building Out the Schema
	Overview of Approaches
	Some Design Guidelines
	1. Be Lightweight and Modular
	2. Use Reference Structures
	3. Re-use Existing Structure
	4. Build Incrementally
	5. Use Simple Predicates
	6. Test for Logic and Consistency
	7. Map to External Ontologies

	Building Out the Instances (Knowledge Bases)
	1. Update Changing Knowledge
	2. Process the Input KBs
	3. Install, Run and Update the System
	4. Test and Vet Placements
	5. Test and Vet Mappings
	6. Test and Vet Assertions
	7. Ensure Completeness
	8. Test and Vet Coherence
	9. Generate Training Sets
	10. Test and Vet Learners
	Rinse and Repeat

	‘Pay as You Benefit’
	Placing the First Stake
	Incremental Build Outs Follow Benefits
	Learn to Quantify and Document Benefits

	Testing and Best Practices
	A Primer on Knowledge Statistics
	Two Essential Metrics, Four Possible Values
	Many Useful Statistics
	Working Toward ‘Gold Standards’

	Builds and Testing
	Build Scripts
	Testing Scripts
	Literate Programming

	Some Best Practices
	Data and Dataset Practices
	Dataset Best Practices
	Linked Data
	Knowledge Structures and Management Practices
	Organizational and Collaborative Best Practices
	Naming and Vocabulary Best Practices
	Best Ontology Practices
	Testing, Analysis and Documentation Practices
	Testing Best Practices
	Analytical Best Practices
	Documentation Best Practices
	Practical Potentials and Outcomes

	Potential Uses in Breadth
	Near-term Potentials
	Word Sense Disambiguation
	Relation Extraction
	Reciprocal Mapping
	Extreme Knowledge Supervision

	Logic and Representation
	Automatic Hypothesis Generation
	Encapsulating KBpedia for Deep Learning
	Measuring Classifier Performance
	Thermodynamics of Representation

	Potential Methods and Applications
	Self-Service Business Intelligence
	Semantic Learning
	Nature As An Information Processor
	Gaia Hypothesis Test

	Potential Uses in Depth
	Workflows and BPM
	Concepts and Definitions
	The BPM Process
	Optimal Approaches and Outcomes

	Semantic Parsing
	A Taxonomy of Grammars
	Computational Semantics
	Three Possible Contributions Based on Peirce
	#1 - Peircean POS Tagging
	#2 - Machine Learning Understanding Based on Peirce
	#3 - Peirce Grammar

	Cognitive Robotics and Agents
	Lights, Camera, Action!
	Grounding Robots in Reality
	Robot as Pragmatist

	Conclusion
	The Sign and Information Theoretics
	Peirce: The Philosopher of KR
	Knowledge and Peirce
	Time to Move from Theory to Practice

	Reasons to Question Premises
	AI is a Field of KR
	Hurdles to be Overcome
	Of Crystals and Robots

	Appendix A:
	Perspectives on Peirce
	Peirce, The Person
	Peirce, The Philosopher
	Peirce’s Architectonic
	Chance, Existents, and Continuity: Real
	Chance
	Existents
	Continuity
	What is Real
	Leaning Into Pragmatism

	Peirce, The Polymath
	Mathematics
	Cenoscopy
	Idioscopy
	Scientist
	Inventor
	Humanist, as Person

	An Obsession with Terminology
	Peirce, The Polestar
	Resources About Peirce

	Appendix B:
	The KBpedia Resource
	Components
	The KBpedia Knowledge Ontology (KKO)
	The KBpedia Knowledge Bases
	The KBpedia Typologies

	Structure
	Capabilities and Uses

	Appendix C:
	KBpedia Feature Possibilities
	What is a Feature?
	A (Partial) Inventory of Natural Language and KB Features
	Feature Engineering for Practical Limits
	Considerations for a Feature Science
	Role of a Platform

	Glossary
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

	Index

