Available Article

Author’s final: This draft is prior to submission for publication, and the
subsequent edits in the published version. If quoting or citing, please refer to the
proper citation of the published version below to check accuracy and pagination.

Cite as: Bergman, M. K. Keeping the Design Open. in A Knowledge Representation
Practionary: Guidelines Based on Charles Sanders Peirce (ed. Bergman, M. K.) 183—
205 (Springer International Publishing, 2018). doi:10.1007/978-3-319-98092-8_9

Official site: https://link.springer.com/book/10.1007/978-3-319-98092-8

Full-text: http://www.mkbergman.com/publications/akrp/chapter-9.pdf

Abstract: The mindset of ‘openness’ is not a discrete thing, but a concept with
separate strands. Open logics and the open-world assumption enable us to add
information to existing systems without the need to re-architect the underlying
schema. Open-source software has changed the landscape for innovation at low
cost. Our knowledge graphs useful to a range of actors must reflect the languages
and labels meaningful to those actors.

We should be explicit about the diversity of terms in our vocabularies, using
multiple senses to associate related concepts. We use reference concepts to
provide fixed points in the information space for linking with external content.

https://link.springer.com/book/10.1007/978-3-319-98092-8
http://www.mkbergman.com/publications/akrp/chapter-9.pdf

9

KEEPING THE DESIGN OPEN

t the time of my high school years, Alfred Wegener*s theory of continental

drift was still a question mark for many mainstream scientists. In my college
years, a young American biologist, Lynn Margulis, postulated and was ridiculed for
the theory of endosymbiosis; that is, that certain cell organelles originated from ini-
tially free-living bacteria. In 1980 the Alvarez's hypothesized that the age of di-
nosaurs was ended by an asteroid strike near the Yucatan at the end of the
Cretaceous. In the 1990s we were just starting to get a glimmer the Helicobacter bacte-
ria had been the cause of misdiagnosed peptic ulcers for decades. Today, we widely
accept all of these then-revolutionary hypotheses as scientific truth.

We now see continental drift as a major explanation for the geographic dispersal
of plant and animal families across the globe. Margulis’ theory is understood to em-
brace cell organelles from mitochondria to chloroplasts, informing us that the funda-
mental unit of all organisms — the cell — is itself an amalgam of archaic symbionts
and bacteria-like lifeforms. We now correlate asteroid strikes to historical extinction
events through geologic time. Though the native human genome has some 23,000
genes, researchers estimate more than 3 million genes arise from bacterial fellow
travelers in our gut and skin ‘microbiomes.” We know that our ecosystem of bacteria
is involved in nutrition and digestion, contributing perhaps as much as 15% of the
energy value we get from food. Besides ulcers, researchers have implicated symbiotic
bacteria in heart disease, Type 1I diabetes, obesity, malnutrition, multiple sclerosis,
other auto-immune diseases, asthma, eczema, liver disease, bowel cancer and autism,
among others. Within my professional life, major aspects of science, geology, and bi-
ology have undergone massive and fundamental shifts in understanding. Concomi-
tant changes have swept through society. Such is the nature of knowledge, with the
seeming rapidity of advances steadily increasing.

This chapter begins our Part III. All three chapters cover the components of
knowledge representation design responsive to such fast-moving changes. In this
chapter, we discuss the importance of open design to capture rapid changes in
knowledge, indeed to capture the broad trends toward openness across all aspects of
human informational and economic activity. These imperatives help inform the
structural considerations that go into how to federate and interoperate data from

175

http://en.wikipedia.org/wiki/Microbiome
http://en.wikipedia.org/wiki/Helicobacter
https://en.wikipedia.org/wiki/Cretaceous%E2%80%93Paleogene_extinction_event
https://en.wikipedia.org/wiki/Alvarez_hypothesis
http://en.wikipedia.org/wiki/Endosymbiotic_theory
http://en.wikipedia.org/wiki/Lynn_Margulis
http://en.wikipedia.org/wiki/Continental_drift
http://en.wikipedia.org/wiki/Continental_drift
http://en.wikipedia.org/wiki/Continental_drift
http://en.wikipedia.org/wiki/Continental_drift
http://en.wikipedia.org/wiki/Alfred_Wegener

A KNOWLEDGE REPRESENTATION PRACTIONARY

multiple sources in multiple formats. In the following Chapter 10, we discuss our ty-
pology design, the basis by which we can adapt our overall design to new domains or
expand the knowledge we capture for any given domain. In Chapter 11, we explain
how these open components naturally also lead to a design founded on knowledge
bases and graphs, as the proper structural expressions of this open and connected
nature. Think of Part III, combined with the three earlier chapters of Part II, as de-
scribing all of the design and building block inputs needed for a responsive knowl-
edge representation system, the topic of Part IV that follows.

THE CONTEXT OF OPENNESS

Since ancient times, an exemplar being the Library of Alexandria, humans have
used libraries to collate documents and to provide access to knowledge. Repositories
and books sometimes threaten authoritarian regimes or close-minded orthodoxies,
as does information and knowledge in general. Book burnings and the ransacking of
libraries are some of the saddest events of human history.

Fortunately, a notable and profound transition is underway. This transition is not
something we can tie to a single year or event. It is also something that is quite com-
plex in that it is a matrix of forces, some causative and some derivative, all of which
tend to reinforce one another to perpetuate the trend. The trend that I am referring
to is openness, and it is a force that is both creative and destructive, and one that in
retrospect is also inevitable given the forces and changes underlying it. It is hard to
gauge exactly when the blossoming of openness began, but by my lights, the timing
corresponds to the emergence of open source software and the Internet. Over the
past quarter-century, the written use of the term ‘open’ has increased more than 40%
in frequency in comparison to terms such as ‘near’ or ‘close,” a pretty remarkable
change in usage for a more-or-less common term.”

An Era of Openness

Though the term of ‘openness’ is less common than ‘open,’ its change in written
use has been even more spectacular, with its frequency more than doubling (112%)
over the past 25 years. The change in growth slope appears to coincide with the mid-
1980s,” consistent with my thesis of being linked to open source software and the In-
ternet. Because ‘openness’ is more of a mindset or force — a point of view, if you will
— it is not itself a discrete thing, but an idea or concept.’ In contemplating this world
of openness, we can see quite a few separate, yet sometimes related, strands that
provide the weave of the ‘openness’ definition:

* Open source — refers to a computer program in which the source code is avail-
able to the general public for use or modification from its original design. Open-
source code is typically a collaborative effort where programmers improve upon
the source code and share the changes within the community so that other

176

https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Openness
https://en.wikipedia.org/wiki/Library_of_Alexandria

KEEPING THE DESIGN OPEN

members can help improve it further;

Open standards — are standards and protocols, some informal or put forward by
individuals, that are fully defined and available for use without royalties or re-
strictions; stakeholders often suggest and modify these open standards in public
collaboration, with adoption subject to some open governance procedures;

Open content — is a creative work, generally based on text, that others can copy
or modify; open access publications are a particular form of open content that
provides unrestricted online access to peer-reviewed scholarly research;

Open data — is the idea that specific data should be freely available to everyone
to use and republish as they wish, without restrictions from copyright, patents
or other mechanisms of control; open data is a special form of open content;

Open knowledge — is what open data becomes when it is useful, usable and
used; according to the Open Knowledge Foundation, the key features of open-
ness are availability and access wherein the data must be available as a whole
and at no more than a reasonable reproduction cost, preferably by downloading
over the Internet;

Open knowledge bases — are open knowledge packaged in knowledge-base
form;

Open access to communications — is non-discriminatory access to communica-
tions networks, allowing new models such as crowdsourcing (obtaining content,
services or ideas from a large group of people), citizen science, or crowdfunding
(raising funds from a large group of people) to arise;

Open rights — are an umbrella term to cover the ability to obtain content or
data without copyright restrictions and gaining use and access to software or
intellectual property via open licenses;

Open logics — are the use of logical constructs, such as the open world
assumption, which enable us to add data and information to existing systems
without the need to re-architect the underlying data schema; such logics are es-
sential to knowledge management and the continuous addition of new informa-
tion;

Open architectures — are means to access existing software and platforms via
such means as open APIs (application programming interfaces), open formats
(published specifications for digital data) or open Web services;

Open government — is a governing doctrine that holds that citizens have the
right to access the documents and proceedings of the government to allow for
effective public oversight; online access to government data and information is
one goal;

Open education — is an institutional practice or programmatic initiative that
broadens access to the learning and training traditionally offered through for-
mal education systems, generally via educational materials, curricula or course

177

https://en.wikipedia.org/wiki/Open_education
https://en.wikipedia.org/wiki/Open_government
https://en.wikipedia.org/wiki/Open_Collaboration_Services
https://en.wikipedia.org/wiki/Open_format
https://en.wikipedia.org/wiki/Open_API
https://en.wikipedia.org/wiki/Open-world_assumption
https://en.wikipedia.org/wiki/Open-world_assumption
https://en.wikipedia.org/wiki/Open-world_assumption
https://en.wikipedia.org/wiki/Open_content#Licenses
https://en.wikipedia.org/wiki/Copyright
https://en.wikipedia.org/wiki/Crowdfunding
https://en.wikipedia.org/wiki/Citizen_science
https://en.wikipedia.org/wiki/Crowdsourcing
https://en.wikipedia.org/wiki/Open_communication
https://en.wikipedia.org/wiki/Knowledge_base
http://okfn.org/
https://en.wikipedia.org/wiki/Open_knowledge
https://en.wikipedia.org/wiki/Open_data
https://en.wikipedia.org/w/index.php?title=Open_access_publishing
https://en.wikipedia.org/wiki/Open_content
http://en.wikipedia.org/wiki/Open-source_governance
https://en.wikipedia.org/wiki/Open_standards

A KNOWLEDGE REPRESENTATION PRACTIONARY

notes at low or no cost without copyright limitations;

* Open design — is the development of physical products, machines, and systems
through the use of publicly shared design information, often via online collabo-
ration;

» Open research — makes the methodology and results of research freely avail-
able via the Internet, and often invites online collaboration; we refer to it as
open science if the research is scientific in nature; and

» Open innovation — is the use and combination of open and public sources of
ideas and innovations with those internal to the organization.

In looking at the factors above, we can ask two formative questions. First, is the
given item above primarily a causative factor for ‘openness’ or is it a derivative due to
a more ‘open’ environment? Second, does the factor have an overall high or low im-
pact on the question of openness. Figure 9-1 plots these factors and dimensions.

Impact on Openness
Low High

@ Open access
Open rights @

Open standards @

Causative

@ Open source
® Open logics
Open content @

Role

ernment
@ Open desig ® Open architectures
@ Open KBs

Derivative

@ Open research

@ Open innovation

Figure 9-1: Openness Begets More Openness

Early expressions of ‘openness’ helped cause the conditions that lead to openness
in other areas. As those areas also become more open, positive reinforcement is
passed back to earlier open factors, all leading to a virtuous circle of increased open-
ness. Though perhaps not strictly ‘open,” other various and related factors such as

178

https://en.wikipedia.org/wiki/Open_innovation
https://en.wikipedia.org/wiki/Open_science
https://en.wikipedia.org/wiki/Open_science
https://en.wikipedia.org/wiki/Open_research
https://en.wikipedia.org/wiki/Open_design

KEEPING THE DESIGN OPEN

the democratization of knowledge, broader access to goods and services, more com-
petition, ‘long tail’ access and phenomenon, and in genuinely open environments,
more diversity and more participation, also could be plotted on this matrix.

Once viewed through the lens of ‘openness,’ it starts to become clear that all of
these various ‘open’ aspects are remaking information technology and human inter-
action and commerce. The impacts on social norms and power and governance are
just as profound. Though many innovations have uniquely shaped the course of hu-
man history — from literacy to mobility to communication to electrification or com-
puterization — none appear to have matched the speed of penetration nor the im-
pact of ‘openness.” So, what is driving this phenomenon? Where did the concept of
‘openness’ arise?

The matrix in Figure 9-1 helps us hypothesize one foundational story. Look at the
question of what is causative and what might be its source. One conclusion is the In-
ternet — specifically the Web, as reinforced and enabled by open-source software —
is a primary causative factor. Relatively open access to an environment of connectiv-
ity guided by standard ways to connect and contribute began to fuel still further con-
nections and contributions. The positive values of access and connectivity via stan-
dard means, in turn, reinforced the understood value of ‘openness,’ leading to still
further connections and engagement. More openness is like the dropped sand grain
that causes the entire dune to shift. The Web with its open access and standards has
become the magnet for open content and data, all working to promote derivative and
reinforcing factors in open knowledge, education and government.

The fruits of ‘openness’ tend to reinforce the causative factors that created ‘open-
ness’ in the first place. More knowledge and open aspects of collaboration lead to still
further content and standards that lead to further open derivatives. In this manner,
‘openness’ becomes a kind of engine that promotes further openness and innovation.
A kind of open logic (premised mainly on the open world assumption, see next sec-
tion) lies at the heart of this engine. Since new connections and new items are con-
tinually arising and fueling the openness engine, we bolt on new understandings to
original starting understandings. This accretive model of growth and development is
similar to the deposited layers of pearls or the growth of crystals. The structures
grow according to the factors governing the network effect, and the nature of the
connected growth structures may be represented and modeled as graphs. In general,
as might be expected, the greater the degree of structure, the higher its potential
contribution to interoperability.

‘Openness,’ like the dynamism of capitalism, is both creative and destructive.* The
effects are creative — actually transformative — because of the new means of collab-
oration that arise based on the new connections between new understandings or
facts. ‘Open’ graphs create entirely new understandings as well as provide a scaffold-
ing for still further insights. The fire created from new understandings pulls in new
understandings and contributions, all sucking in still more oxygen to keep the inno-
vation cycle burning. However, the creative fire of openness is also destructive. Pro-
prietary software, excessive software rents, silo-ed and stovepiped information
stores, and much else are being consumed and destroyed in the wake of openness.

179

http://en.wikipedia.org/wiki/Creative_destruction
https://en.wikipedia.org/wiki/Long_tail
https://en.wikipedia.org/wiki/Democratization_of_knowledge

A KNOWLEDGE REPRESENTATION PRACTIONARY

Older business models — indeed, existing suppliers — are in the path of this open
conflagration. Openness is sweeping private and ‘closed’ solutions into the firestorm.
The massive storehouse of legacy kindling appears likely to fuel the openness flames
for some time to come.

‘Openness’ becomes a form of adaptive life, changing the nature, value and dy-
namics of information and who has access to it. Though much of the old economy is
— and, will be — swept away in this destructive fire, new and more fecund growth is
replacing it. From the viewpoint of the practitioner on the ground, I have not seen a
more fertile innovation environment in information technology. Once the proper
conditions for ‘openness’ were in place, it now seems inevitable that today’s open cir-
cumstances would unfold. The Internet, with its (generally) open access and stan-
dards, was a natural magnet to attract and promote open-source software and con-
tent. A hands-off, unregulated environment has allowed the Internet to innovate,
grow, and adapt at an unbelievable rate.

Of course, coercive state regimes can control the Internet to varying degrees and
can limit innovation. Cybersleuths and hackers may access our information stores
and private data, unknown or undetected by us. Any change in the Internet from
‘open’ to more ‘closed’” may also act over time to starve the openness fire. Examples
of such means to slow openness include imposing Internet regulation, walled gar-
dens like Facebook, limiting access (technically, economically or by fiat), moving
away from open standards, or limiting access to content. Any of these steps would
starve the innovation fire of oxygen. Access to information wins out over risks,
though we do need to self-impose restrictions to guard privacy. Openness reduces
the ability of authoritative regimes or close-mindedness to threaten our knowledge.

The forces impelling openness are strong. Still, these observations are no proof
for cause-and-effect. The correspondence of ‘openness’ to the Internet and open
source may be a coincidence. However, my sense suggests a more causative role. In
all of these regards ‘openness’ is a woven cord of forces changing the very nature and
scope of information available to humanity. ‘Openness,” which has heretofore largely
lurked in the background as some unseen force, now emerges as a criterion by which
to judge the wisdom of various choices. ‘Open’ appears to contribute more and be
better aligned with current forces. Business models based on proprietary methods or
closed information appear, at least for today’s circumstances, on the losing side of
history.

The Open World Assumption

The open world assumption (OWA) is a different logic premise for most organiza-
tions. Relational database systems, for example, embrace the alternate closed world
assumption (CWA). OWA is a formal logic assumption that the truth-value of a state-
ment is independent of whether or not it is known as true by any single observer or
agent. OWA is used in knowledge representation to codify the informal notion that in
general no single agent or observer has complete knowledge, and therefore cannot
make the closed world assumption. The OWA limits the kinds of inference and deduc-

180

http://en.wikipedia.org/wiki/Closed_world_assumption
http://en.wikipedia.org/wiki/Closed_world_assumption
http://en.wikipedia.org/wiki/Open_world_assumption

KEEPING THE DESIGN OPEN

tions an agent can make to those that follow from statements known to the agent as
true. OWA is useful when we represent knowledge within a system as we discover it,
and where we cannot guarantee that we have discovered or will discover complete
information. In the OWA, statements about knowledge that are not included in or in-
ferred from the knowledge explicitly recorded in the system may be considered un-
known, rather than wrong or false. Semantic technology languages such as OWL and
RDF make the open world assumption. In contrast to the closed-world approach of
transaction systems, IT systems based on the logical premise of the open world as-
sumption (OWA) mean:

» Lack of a given assertion does not imply whether it is true or false; it merely is
not known;

= A lack of knowledge does not imply falsity;
» Everything is permitted until it is prohibited;

» Schema can be incremental without re-architecting prior schema (‘extensible’);
and

» Information at various levels of incompleteness can be combined.

Some enterprise circumstances — say a complete enumeration of customers or
products or even controlled engineering or design environments — may warrant a
closed world approach. CWA is the presumption that what is not currently known as
true is false. Engineering an oil drilling platform or launching a rocket, in fact, de-
mands that. A closed-world assumption performs well for transaction operations
with easier data validation. The number of negative facts about a given domain is
typically larger than positive ones. So, in many bounded applications, the number of
negative facts is so large that their explicit representation can become practically
impossible. In such cases, it is simpler and shorter to state known ‘true’ statements
than to enumerate all ‘false’ conditions.

On the other hand, the relational model is a paradigm where the information
must be complete, and a single schema must describe it. Traditional databases re-
quire we agree on a schema before data can be stored and queried. The relational
model assumes that only explicitly represented objects and relationships exist in the
domain. It assumes names are unique, and it is how we identify objects in the do-
main. The result of these assumptions is that relational systems have a single (canoni-
cal) model where objects and relationships are in a one-to-one correspondence with
the data in the database.’

It is natural to take a successful approach and try to extend it to other areas.
However, beginning with data warehouses in the 1980s, business intelligence (BI)
systems in the 1990s, and the general issue of most enterprise information being
bound up in documents for decades, the application of the relational model to these
areas has been disappointing. CWA and its related assumptions are a poor choice
when we attempt to combine information from multiple sources, to deal with uncer-
tainty or incompleteness in the world, or to try to integrate internal, proprietary in-

181

A KNOWLEDGE REPRESENTATION PRACTIONARY

formation with external data. Irregularity and incompleteness are toxic to relational
model design. In the open semantic Web, we can share data that is structured differ-
ently via RDF triple statements (subject - predicate - object). For example, OWA allows
storing information about suppliers without cities and names alongside suppliers
with that information. Information can be combined with similar objects or individu-
als even though they have different or non-overlapping attributes. We now check du-
plicates based on the logic of the system and not unique name evaluations. Data vali-
dation in OWA systems can both become more complicated (via testing against re-
striction statements) or partially easier (via inference).

It is interesting to note that the theoretical underpinnings of CWA by Reiter®
arose about the same time (1978) that data federation and knowledge representation
(KR) activities also started to come to the fore. CWA and later work on (for example)
default reasoning appeared to have informed early work in description logics and its
alternative OWA approach. However, the initial path toward KM work based on the
relational model also seems to have been set in this timeframe.

We are still reaping the whirlwind from this unfortunate early choice of the rela-
tional model and CWA for knowledge representation, knowledge management, and
business intelligence purposes. Moreover, while much theoretical and logical discus-
sion exists for alternative OWA and CWA data models, surprisingly few discussions
occur for the implications of these models. We may couple the data models behind
these approaches (Datalog or non-monotonic logic in the case of CWA; monotonic in
the case of OWA; OWA is also firmly grounded in description logics) with other as-
sumptions. From a theoretical standpoint, I have found the treatment of Patel-
Schneider and Horrocks® useful in comparing these approaches. However, the De-
scription Logics Handbook and some other varied sources are also helpful.®’

I think it is fair to assert that the closed world assumption and its prevalent mind-
set in traditional database systems have hindered the ability of organizations and the
vendors that support them to adopt incremental, low-risk means to knowledge sys-
tems and management. CWA, in turn, has led to over-engineered schema, too-com-
plicated architectures and massive specification efforts that have led to high deploy-
ment costs, blown schedules, and brittleness.

In limited cases, the relational model can embrace the open world assumption,
such as the null in SQL. Similarly, semantic Web approaches can be closed world,
such as frame languages or Prolog or other special considerations. We can also use
relational systems for managing our instance data, while we rely on open world sys-
tems for the knowledge graph.

In most real-world circumstances, much we do not know, and we interact in com-
plex and external environments. Knowledge management inherently occupies this
space. Ultimately, data interoperability implies a global context. Open world is the
proper logic premise for these circumstances. Via the OWA framework, we can read-
ily change and grow our conceptual understanding and coverage of the world, in-
cluding the incorporation of external ontologies and data. Since this can comfortably
co-exist with underlying closed-world data, a design based on OWA can readily
bridge both worlds. Open world frameworks provide some incredible benefits where

182

https://en.wikipedia.org/wiki/Prolog
https://en.wikipedia.org/wiki/Frame_language
https://en.wikipedia.org/wiki/Frame_language
http://en.wikipedia.org/wiki/Null_(SQL)
http://en.wikipedia.org/wiki/Monotonic#Monotonic_logic
http://en.wikipedia.org/wiki/Non-monotonic_logic
http://en.wikipedia.org/wiki/Datalog

KEEPING THE DESIGN OPEN

open world conditions apply:

* Domains can be analyzed and inspected incrementally;
= Schema can be incomplete and developed and refined gradually;

» The data and the structures within these open world frameworks can be used
and expressed in a piecemeal or incomplete manner;

* We can readily combine data with partial characterizations with other data hav-
ing complete characterizations;

» Systems built with open world frameworks are flexible and robust; as we gain
new information or structure, we can incorporate without negating the infor-
mation already resident; and

* Open world systems can readily bridge or embrace closed world subsystems.

Open world does not necessarily mean open data, and it does not necessarily mean
open source. OWA technologies are neutral to the question of open or public sources.
We can apply the techniques equivalently to internal, closed, proprietary data and
structures. Moreover, we can use the same technologies as a basis for bringing exter-
nal information into the organization. Open world is a way to think about the infor-
mation we have and how we act on it. An open world assumption accepts that we
never have all necessary information and lacking that information does not itself
lead to any conclusions.

In the past, there have been questions about performance and scalability with
open semantic technologies. Progress on these fronts has been rapid, with billion
triple systems now common and improvements steady. Fortunately, the incremental
approach that we advocate herein dovetails well with these rapid developments.
There should be no arguing the benefits of a successful incremental project in a
smaller domain, perhaps repeated across multiple domains, in comparison to previ-
ous, large, costly initiatives that never produce (even though their underlying tech-
nologies are performant). Architecture considerations are also inherent in these
OWA designs, which we discuss in Web-oriented architectures in Chapter 12.

It is perhaps not surprising that one of the fields most aggressive in embracing
ontologies and semantic technologies is the life sciences. Biologists and doctors expe-
rience daily the explosion in new knowledge and understandings. Knowledge work-
ers in other fields would be well-advised to follow the lead of the life sciences in re-
thinking their foundations for knowledge representation and management. It is good
to remember that if your world is not open, then your understanding of it is closed.

Open Standards

Open standards provide a different kind of openness. The rationale for open stan-
dards is not the logic or nature of knowledge, but rather the desire to adopt lan-
guages and systems that have the highest likelihood of being shared with others. We
employ open standards and best practices in KBpedia to 1) obtain the most accurate

183

http://www.mkbergman.com/852/category/web-oriented-architecture-woa/
http://www.mkbergman.com/852/category/web-oriented-architecture-woa/

A KNOWLEDGE REPRESENTATION PRACTIONARY

results, and 2) facilitate interoperability with external data and systems.® We mostly
base our open standards on those from the World Wide Web Consortium (W3C),
which established the standards for the original Web and the design of Web pages
and Web protocols. Specific W3C standards used by KBpedia include RDF, RDFS, OWL 2,
SKOS, SPARQL, and SWRL, introduced in the prior chapter.

Other standards, such as HTML, are also used where appropriate. De facto stan-
dards may contribute, arising from the effort of individuals or projects. We also may
employ open source standard libraries and tools. For KBpedia, these include the on-
tology IDE, Protégé, the OWL API and the search engine Lucene. In the use of these
standards, we apply best practices, many of which we have developed through our
client work.” Some of these include the use of semsets to capture the multiple labels
applied to a given thing; how to construct and manage ontologies (also known as
knowledge graphs); ensuring multi-lingual capabilities; and build and management
workflows. We discuss these in following sections and chapters. We have written
most supporting KBpedia code in Clojure, a modern language based on the original Al
language Lisp, in part due to its ability to run on the Java virtual machine. This abil-
ity means we may concurrently use any existing Java application with our various
KBpedia build, testing, analysis, and management routines.

Open standards, like open source, provide positive feedback across the entire de-
velopment ecosystem. Developers most often write open source software with open
standards and languages. Tooling written in open standards has a broader base of
adoption. Developers and knowledge workers prefer to work with open standards be-
cause they desire transferable job skills and experience. Like other aspects of the
‘openness’ phenomenon, open standards are a positive contributor to innovation and
still more openness.

INFORMATION MANAGEMENT CONCEPTS

Openness means we also need to accommodate some additional concepts in our
design. The first of these considerations relates to how we refer to and name things.
Not all of us use the same words for things, and we should be explicit (‘open’) about
this fact in our vocabularies. The second consideration is that we need to provide rel-
atively balanced and equal-weighted concepts in our reference structures. In the case
of KBpedia, with its use as a general purpose reference structure, this means we need
to capture a set of concepts that capture relatively well the entire knowledge do-
main. However, the same principles apply to restricted domains and how to define
their overall conceptual structure. The third consideration is that, depending on
context, we also may use the same term to refer to either an instance or a general
class. Again, we should be explicit about these referential differences, with logic and
design suitable to them. For lack of a better phrase, I collectively term these three
considerations as information management concepts that we need to embrace in our
designs.

% See Chapter 13.

184

https://clojure.org/
https://lucene.apache.org/
https://owlcs.github.io/owlapi/
http://protege.stanford.edu/
https://www.w3.org/

KEEPING THE DESIGN OPEN

We intricately associate our vocabularies with how we see and understand the
world. We all know the apocryphal claim of how Eskimos have many more words for
snow, but the idea likely applies to multiple perspectives in multiple domains. My
own first experience is when I was an undergraduate learning plant taxonomy. We
had to learn hundreds of strange terms such as glabrous or hirsute or pinnate, all
terms of art for how to describe leaves, their shapes, their hairiness, fruits and
flowers, and such. What happens, though, when one learns the terminology of a
domain is that one’s eyes are opened to see and distinguish more. What had pre-
viously been for me a field of view composed of multiple shades of green made up
of shrubs and trees, began to emerge as distinct species of plants and individual
variants that I could discern and identify. As I learned nuanced distinctions, I be-
gan to see with greater clarity. In knowledge representation systems, where so
much of the knowledge is bound up in text and natural language, training oneself
to see the individual leaves and trees from the forest is a critical step to captur-
ing the domain. In part, this attention leads to a richer domain vocabulary.

Things, Not Strings

One of the strongest contributions that semantic technologies make to knowl-
edge-based artificial intelligence (KBAI) is to focus on what things mean, as opposed
to how they are labeled. The phrase that captures this focus on underlying meaning
is ‘things not strings.” The idea of something — that is, its meaning — is conveyed by
how we define that something, the context for how we use the various tokens (terms)
for that something, and in the variety of names or labels we apply to that thing. In
Chapter 5, 1 provided the examples of parrots and the United States to illustrate this
concept, among other semantic heterogeneities.

We should not view knowledge graphs, properly understood, as being comprised
of labels, but of concepts, entities and the relationships between those things. If we
construct our knowledge graphs using single labels for individual nodes and rela-
tions, we will not be able to capture the nuances of context and varieties of refer-
ence. A knowledge graph useful to a range of actors must reflect the languages and
labels meaningful to those actors. To distinguish the accurate references of individ-
ual terms we need the multiple senses of words to each be associated with its related
concepts and then to use the graph relationships for those concepts to help disam-
biguate the intended meaning of the term based on its context of use.

According to WordNet, a synset (short for synonym set) is “defined as a set of one
or more synonyms that are interchangeable in some context without changing the
truth value of the proposition in which they are embedded.”® In our view, the con-
cept of a synset is helpful but still does not go far enough. Any name or label that
draws attention to a given thing can provide the same referential power as a syn-
onym. If two parties use two different terms to refer to the same thing, we need not
g0 so far as to try to enforce a truth criterion. We can include in this category abbre -
viations, acronyms, aliases, argot, buzzwords, cognomens, derogatives, diminutives,
epithets, hypocorisms, idioms, jargon, lingo, metonyms, misspellings, nicknames,

185

http://www.mkbergman.com/category/kbai/
https://en.wikipedia.org/wiki/Eskimo_words_for_snow
https://en.wikipedia.org/wiki/Eskimo_words_for_snow

A KNOWLEDGE REPRESENTATION PRACTIONARY

non-standard terms (see Twitter), pejoratives, pen names, pseudonyms, redirects,
slang, sobriquets and stage names as well as, of course, synonyms. Collectively, we
call all of the terms that may refer to a given concept or entity a semset. In all cases,
these terms are mere pointers to the actual something at hand.

In the KBpedia knowledge graph, these terms are defined either as skos:prefLa-
bel (the preferred term), skos:altLabel (all other semset variants) or skos:hid-
denLabel (misspellings). Preferred label (or prefLabels or title) is the readable string
(name) for each object in KBpedia.* We provide labels as a convenience; the actual
definition of the object comes from the totality of its description, prefLabel, altLa-
bels, and connections (placement) within the knowledge graph. Labels of all kinds are
representations and reside in Thirdness.

You can inspect for yourself how this concept of semset works in KBpedia. You
can go to the standard online KBpedia search page and enter a query, for example,
‘mammal.”” By changing between ‘Preferred Label’ and ‘All content’ on the dropdown
list under ‘Search Concepts,” you can get a ten-fold range of results. Naturally, as one
would expect, increasing the number of terms something might be known by acts to
increase the possible matches within the knowledge graph. Semsets give us a way to
narrow or broaden queries, as well as in combination with linked concepts, to disam-
biguate the context of specific terms. We can apply these same considerations to
SPARQL queries or programmatically when working with the KBpedia knowledge
graph (or any other graph constructed to KBpedia’s standards).

Charles Peirce held strong views about precision in naming things, best expressed
by his article on The Ethics of Terminology." His beliefs often led him to use obscure or
coined terms to avoid poor understanding of common terms. He also proposed a va-
riety of defining terms throughout the life of many of his concepts in his quest for
precision. He also understood that terms (symbols) could be interpreted in different
ways (interpretants) by various agents (interpreters). With inquiry, truth-seeking, and
the consensus of the community of users, we can reference our desired objects with
more precision. That is our ideal. Peirce would concur that many ways refer to the
same thing in the real world. The idea of semset is expressly designed to capture that
insight.

The Idea and Role of Reference Concepts

Interoperability comes down to the nature of things and how we describe those
things or quite similar things from different sources. Given the robust nature of se-
mantic heterogeneities in diverse sources and datasets on the Web (or anywhere
else, for that matter!), how do we bring similar or related things into alignment?
Then, how can we describe the nature or basis of that alignment?

Of course, classifiers since Aristotle and librarians for time immemorial have been

% Other label types may be added to this roster, such as short- and long-labels that might be the reference for
user interface labels where alternatives to prefLabel are desired. All labels may also be expressed in any of
the standard 1SO human languages.

T See http://kbpedia.com/knowledge-graph/search/?query=mammal&index=rcs.

186

http://en.wikipedia.org/wiki/Categories_(Aristotle)
https://isidore.co/calibre/get/pdf/The%20Essential%20Peirce_%20Selected%20Philosophical%20Writings%20(1893-1913)%20-%20Peirce,%20Charles%20Sanders%20%26amp%3B%20Peirce%20Edition%20Project_5163.pdf
http://kbpedia.com/knowledge-graph/search/?query=mammal&index=rcs
http://cognonto.com/knowledge-graph/

KEEPING THE DESIGN OPEN

putting forward various classification schemes, controlled vocabularies and subject
headings. When one wants to find related books, it is convenient to go to a central lo-
cation where we may find books about the same or similar topics. If we can catego-
rize the book in more than one way — as all are — then something like a card catalog
is helpful to find additional cross-references. Every domain of human endeavor
makes similar attempts to categorize things. On the Web we have none of the limita-
tions of physical books and physical libraries; locations are virtual, and copies can be
replicated or split apart endlessly because of the virtually zero cost of another elec-
tron. However, we still need to find things, and we still want to gather related things
together. As stated by Elaine Svenonius, “Organizing information if it means nothing
else means bringing all the same information together.”" This sentiment and need
remain unchanged whether we are talking about books, Web documents, chemical
elements or our information stores.

Like words or terms in human language that help us communicate about things,
how we organize things needs to have an understood and definite meaning, hope-
fully, bounded with some degree of precision, that enables us to have some confi-
dence we are communicating about the same something with one another. However,
when applied to the Web and machine communications, we need further precision in
characterizations and definitions.

The notion of a Web basis organizing things is both easier and harder than tradi-
tional approaches to classification. It is easier because everything is digital: we can
apply multiple classification schemas and can change them at will. We are not locked
into legacy structures like huge subject areas reserved for arcane or now historically
less relevant topics, such as the Boer Wars or phrenology (though we still accommo-
date access). We need not move physical books around on shelves to accommodate
new or expanded classification schemes. We can add new branches to our classifica-
tion of, say, nanotechnology as rapidly as the science advances. The notion is harder
because we can no longer rely on the understanding of human language as a basis for
naming and classifying things. Actually, of course, language has always been ambigu-
ous, but it can be manifestly more so when put through the grinder of machine pro-
cessing and understanding. Machine processing of related information adds the new
hurdles of no longer being able to rely on text labels (‘names’) alone as the identifier
of things and requires we be more explicit about our concept relationships and con-
nections. Fortunately, here, too, much has been done in helping to organize human
language through such lexical frameworks as WordNet and similar. We have learned
much while grappling with these questions of how to organize and describe informa-
tion to aid interoperability in an Internet context.

One formalized approach has been put forward by the FRSAD (Functional Re-
quirements for Subject Authority Data) working group,' a community of librarians
and information specialists, dealing with subject authority data. Subject authority
data is the type of classificatory information that deals with the subjects of various
works, such as their concepts, objects, events, or places. As the group stated, the
scope of this effort pertains to the ‘aboutness’ of various conceptual works. The
framework for this effort, as with the broader FRBR effort, are new standards and ap-

187

https://en.wikipedia.org/wiki/FRSAD
http://en.wikipedia.org/wiki/Machine-readable_dictionary
http://en.wikipedia.org/wiki/Phrenology
http://en.wikipedia.org/wiki/Boer_Wars
https://en.wikipedia.org/wiki/Elaine_Svenonius
https://en.wikipedia.org/wiki/Elaine_Svenonius
http://en.wikipedia.org/wiki/Subject_heading
http://en.wikipedia.org/wiki/Subject_heading
http://en.wikipedia.org/wiki/Controlled_vocabulary
http://en.wikipedia.org/wiki/Library_classification

A KNOWLEDGE REPRESENTATION PRACTIONARY

proaches appropriate to classifying electronic bibliographic records. The FRSAD ap-
proach distinguishes the idea of something (which it calls a thema, or entity used as the
subject of a work) from the name or label of something (which it calls nomen). For
many in the logic community, steeped in the Peirce triad of sign-object-interpretant,”
this distinction seems rather obvious and straightforward. However, in library sci-
ence, labels have been used interchangeably as identifiers, and making this distinc-
tion clean is a real contribution. The FRSAD effort does not discuss how the thema is
found or organized.

The notion that we use for a reference concept contains elements of this approach.
A reference concept (RC) is the idea of something or a thema in the FRSAD sense. How-
ever, as we use it, an RC is also a reference linking point for external sources or ex-
panded vocabularies. If properly constructed and used, a reference concept becomes
a fixed point in an information space. Think of an RC as a fixed starting point for
navigating, relating, or mapping content. It is a guiding star in a constellation of in-
formation, or, to use a different analogy, a defined, fixed survey marker as used by
surveyors to measure new mapping points. As one or more external sources link to
these fixed points, it is then possible to gather similar content together and to begin
to organize the information space, in the sense of Svenonius. Further, if the RC is it-
self part of a coherent structure, then additional value can be derived from these as-
signments, such as inference, consistency testing, and alignments. If the right factors
are present, it should be possible to relate and interoperate multiple datasets and
knowledge representations.

We have six requirements for a reference concept, some provided by RDF or OWL:

1. Persistent IRI - by definition, a Web-based reference concept should adhere to
linked data principles and should have an IRI as its address and identifier. Also,
by definition as a ‘reference,’ the vocabulary or ontology in which the concept
is a member should be given a permanent and persistent address. Steps should
be taken to ensure 24x7 access to the RC’s IRIs since external sources will be
depending on them. As a general rule, the concepts should also be stated as
single nouns and use CamelCase notation (that is, class names should start with
a capital letter and not contain any spaces, such as MyNewConcept);

2. Preferred label - provide a preferred label annotation property that is used for
human readable purposes and in user interfaces. For this purpose, a construct
such as the SKOS property of skos:prefLabel works well. Note, this label is
not the basis for deciding and making linkages, but it is essential for
mouseovers, tooltips, interface labels, and other human use factors;

3. Definition - give all RCs a reasonable definition, since that and linkages are
what gives an ontology its semantics. Remember not to confuse the label for a
concept with its meaning. For this purpose, a property such as skos:defini-
tion works well, though others such as rdfs:comment or dc:description
are also commonly used. The definition, plus linkages to other concepts, are
the two most critical sources for the concept’s meaning. Adequate text and

188

http://www.w3.org/TR/skos-reference/
http://en.wikipedia.org/wiki/CamelCase
http://www.w3.org/DesignIssues/LinkedData.html
https://en.wikipedia.org/wiki/Survey_marker
http://en.wikipedia.org/wiki/Charles_Sanders_Peirce

KEEPING THE DESIGN OPEN

content also aid semantic alignment or matching tasks;

4. Semset - include explicit consideration for the idea of a ‘semset’ as described
above, which means a series of alternate labels and terms to describe the con-
cept;

5. Language independence - keep the identifier separate from its labels, and qualify
entries for definition, preferred label, and alternative labels with language
tags. Though an additional step (for example, assigning the RDF
xml:lang="en"” tag for English), adhering to this practice gives language inde-
pendence to reference concepts. Sources such as Wikipedia or Wikidata, with
their richness of concepts and multiple language versions, can then be a basis
for creating alternative language versions; and

6. Part of a coherent structure - test for consistency and coherence when modifying
the knowledge structure. A cohesive structure provides the benefits of reliable
inferencing, discovery, navigation, and analysis. Adequately constructed RDFS
and SKOS data models and OWL ontologies can deliver these benefits.

To this basic set of reference concepts, it is also necessary to add the mapping
predicates that relate the RCs to external sources. The mapping predicates have their
own set of design guidelines:

1. Provide the same completeness of specification as RCs;

2. Capture a spectrum of mapping alignments from exact or sameAs to approxi-
mate to represent the real correspondence between items; and

3. Range and domain - use domains and ranges, as provided for by RDFS, to assist
testing, disambiguation, and external concept alignments. Domains apply to
the subject (the left-hand side of a triple); ranges to the object (the right-hand
side of the triple).

In part, many current vocabularies meet these guidelines to some extent. How-
ever, few vocabularies provide complete coverage, and across a broad swath of do-
main needs, gaps remain. This unfortunate observation applies to upper-level on-
tologies, reference vocabularies, and domain ontologies alike.

KBpedia is a knowledge graph of approximately 55,000 reference concepts de-
signed according to these design guidelines. We organize its reference concepts into
about 80 modular and distinct (mostly disjoint) typologies, which I discuss in some de-
tail in the next Chapter 10. The RCs that represent the top-level nodes of these typolo-
gies we also term SuperTypes (also Super Types), which are collections of (mostly)
similar reference concepts. We design most of the SuperType disjoint from the other
SuperType classes. Each typology we use in KBpedia thus has its corresponding top-
level SuperType node.* SuperTypes, and the typologies they represent, thus provide

% In KBpedia, disjoint SuperTypes are termed ‘core’, other SuperTypes used mostly for organizational pur-
poses are termed ‘extended’. KBpedia has a total of about 80 SuperTypes, with 30 or so deemed as ‘core’. See
further Appendix B.

189

http://en.wikipedia.org/

A KNOWLEDGE REPRESENTATION PRACTIONARY

a higher-level of clustering and organization of the reference concepts. The KBpedia
Knowledge Ontology (KKO) only contains the highest-level RCs and SuperTypes. This
design enables a higher level view of KBpedia with only a couple hundred RCs and
makes clear these SuperType typology tie-in points.

For specific domain purposes, you may use KBpedia or portions thereof as the ini-
tial grounding structure. You may expand it into new domain areas following similar
design considerations. Potentially, you may turn nearly any of the existing 55,000
RCs in KBpedia into a SuperType, providing a new tie-in point to the new RCs reflect-
ing the expanded domain.

Punning for Instances and Classes

In ontologies, we may want to treat our concepts as both classes and instances of
a class. Punning, in computer science, refers to a programming technique that sub-
verts or circumvents the type system of a programming language, by allowing us to
treat a value of a particular type as a value of a different type. When used for ontolo-
gies, it means to treat a thing as both a class and an instance, with the use depending
on context. To better understand why we should pun, let’s look at a couple of exam-
ples, both of which combine organizing categories of things and then describing or
characterizing those things. This dual need is common to most domains.

For the first example, let’s take a categorization of apes as a kind of mammal,
which is then a kind of animal. In these cases, ape is a class (general), which relates
to other classes, and apes may also have members, be they particular kinds of apes or
individual apes. At the same time, we want to assert some characteristics of apes,
such as being hairy, two legs and two arms, no tails, capable of walking bipedally,
with grasping hands, and with some being endangered species. These characteristics
apply to the notion of apes as an instance. As another example, we may have the cat-
egory of trucks, which we further split into truck types, brands of trucks, type of en-
gine, and so forth. Again, we may want to characterize that a truck is designed pri-
marily for the transport of cargo (as opposed to automobiles for people transport,
both of which are vehicles), or that trucks may have different drivers license require-
ments or different license fees than autos. These descriptive properties refer to
trucks as an instance. These mixed cases combine both the organization of concepts
and their relations and set members with the description and characterization of
these concepts as things unto themselves. This dual treatment is a natural and com-
mon way to refer to things for most any domain of interest.

Prior practice has been to represent these mixed uses in RDFS or OWL Full, which
makes them easy to write and create since most ‘anything goes’ (a loose way of say-
ing that the structures are not decidable).” OWL 2 has been designed to fix this by
adding punning, which is to evaluate the object as either a class or individual based
on contextual use; the IRI is shared, but we may view its referent as either a class or
instance based on context. Thus, we allow the use of objects both as concepts
(classes) and individuals (instances), the knowledge graph is decidable, and we may
use standard OWL 2 reasoners against them."

190

KEEPING THE DESIGN OPEN

We can diagrammatically show this instance-class dual-use of punning as follows:

ABox TBox

. Class Individual

: View View

E E EngineType

i subClassOf E hasEngine
Ford . E

: i Truck

Figure 9-2: Example of Punning 'Truck'’
TAMING A BESTIARY OF DATA STRUCTS

The real world is one of heterogeneous datasets, multiple schema, and differing
viewpoints. Even within single organizations — and those which formerly expressed
little need or interest to interoperate with the broader world — data integration and
interoperability have been a real challenge, as we discussed in Chapter 4. We should
view simple instance record assertions and representations — the essence of data ex-
change — separately from schema representations. Data values and attributes pose
similar problems to that of concepts when trying to get datasets to interoperate. Like
dictionaries for human languages, or stars and constellations for navigators, or
agreed standards in measurement, or the Greenwich meridian for timekeepers, we
need fixed references to orient and ‘ground’ each new dataset over which we attempt
to integrate. For data values, symbol grounding means that when we refer to an ob-
ject or a number — say, the number 4.1 — we are also referring to the same metric.
4.1 inches is not the same as 4.1 centimeters or 4.1 on the Richter scale, and object
names for set member types also have the same challenges of ambiguous semantics
as do all other things referred to by language. Without such fixities of reference, ev-
erything floats concerning other things, the cursed ‘rubber ruler’ phenomenon. In
Chapter 5 we discussed the wide variety of formats and data structs in the wild, noting
specific design approaches might be embraced to help. We address how to tame this
diversity in this section, at the same time putting our data onto a common frame-
work.

191

http://en.wikipedia.org/wiki/Symbol_grounding
http://en.wikipedia.org/wiki/Prime_meridian_(Greenwich)
mike
Stamp

A KNOWLEDGE REPRESENTATION PRACTIONARY

Rationale for a Canonical Model

In the context of data interoperability, a critical premise is that a single, canoni-
cal data model is highly desirable. Why? Because of 2N v 2. That is, a single reference
(‘canon’) structure means that fewer tool variants and converters need be developed
to talk to the myriad of data formats in the wild. With a canonical data model, talking
to external sources and formats (N) requires only converters to and from the canoni-
cal form (2N). Without a canonical model, the exponential explosion of needed for-
mat converters becomes 2", meaning that every format needs to have a converter to
and from all of the other formats.'® For example, without a canonical data model, ten
different formats would require 1024 converters; with a canonical format, 20 (assum-
ing bi-directional converters).

A canonical data model merely represents the agreed-upon internal representa-
tion. It need not affect data transfer formats. Indeed, in many cases, we may employ
different internal data models from what we use for data exchange. Many data sys-
tems, in fact, have two or three favored flavors of data exchange such as XML, JSON
or the like. In most enterprises and organizations, the relational data model with its
supporting RDBMs is the canonical one. In some notable Web enterprises — say,
Google — the exact details of their internal canonical data models are hidden from
view, with APIs and data exchange standards being the only portions visible to out-
side consumers. Generally speaking, a canonical, internal data standard should meet
a few criteria:

* Be expressive enough to capture the structure and semantics of any contribut-
ing dataset;

= Have a schema itself which is extensible;
* Be performant;

* Have a model to which it is relatively easy to develop converters for different
formats and models;

» Have published and proven standards; and
* Have sufficient acceptance to have many existing tools and documentation.

Other desired characteristics might be free or open source tools, suitable for much
analytic work, efficient in storage, and easy for users to read and maintain.

The RDF Canonical Data Model

Many wild data forms are patently inadequate for modeling and interoperability
purposes. That is why many of these simpler forms might be called ‘naive’: they
achieve their immediate objective of simple relationships and communication, but
require understood or explicit context to meaningfully (semantically) relate to other
forms or data. However, besides naive forms, two common formats with many vari-
ants also should be explicitly considered: the entity-attribute-value (EAV) model and

192

https://en.wikipedia.org/wiki/Entity%E2%80%93attribute%E2%80%93value_model

KEEPING THE DESIGN OPEN

RDBM systems.

EAV is a data model to describe entities where the number of attributes (proper-
ties, parameters) that can be used to describe them is potentially vast, but the num-
ber that may apply to a given entity is relatively modest. In the EAV data model, each
attribute-value pair is a fact describing an entity. EAV systems trade off simplicity in
the physical and logical structure of the data for complexity in their metadata,
which, among other things, plays the role that database constraints and referential
integrity do in standard database designs.

On the other hand, RDBMSs use the relational model and store their data in a tab-
ular form, with rows corresponding to the individual data records and the columns
representing the properties or attributes. RDF can be modeled relationally as a single
table with three columns corresponding to the subject-predicate-object triple. Con-
versely, a relational table can be modeled in RDF with the subject IRI derived from the
primary key or a blank node; the predicate from the column identifier; and the object
from the cell value. Because of these affinities, it is also possible to store RDF data
models in existing relational databases. (In fact, many RDF ‘triple stores’ are RDBM
systems with a tweak, sometimes as ‘quad stores’ where the fourth tuple is the
graph.) Moreover, these affinities also mean that RDF stored in this manner can also
take advantage of the historical experience gained from RDBMS performance and

SQL query optimizations.

eb Service
(Tool)

(Tool) (Tool)

Figure 9-3: Interoperability and RDF as the Canonical Data Model
RDF (Resource Description Framework) might be called a superset of these two
forms and is exquisitely suited to accommodate them. In fact, because of its flexible

data structure ranging from implied EAV through both of these forms and including

193

http://en.wikipedia.org/wiki/Internationalized_Resource_Identifier
mike
Stamp

A KNOWLEDGE REPRESENTATION PRACTIONARY

schema as well, RDF is a kind of ‘universal solvent’ that can readily model most any
known data form.”” When we match this flexible format representation with the abil-
ity to handle semantic differences through ontologies at the OWL 2 level, it is clear
why RDF provides a competent data model around which to build an interoperable
framework. Moreover, because we give all of the information unique Web identifiers
(IRIs), and the whole system resides on the Web accessible via the HTTP protocol, our
information may reside anywhere the Internet connects. These are the reasons why
we have chosen RDF as our canonical data model.

Figure 9-3 on the prior page shows how we approach data interoperability. The in-
put bubbles at the left of the diagram represent the different data formats that the
system must address. We process each through a converter to RDF, which is the in-
ternal form used on the right. We map schema information associated with each left-
side external source to this internal RDF (and OWL 2) data model in advance, before
ingesting content.” Note that the converter responsible for the external content in-
gest may (should!) be a callable Web service so that external sources may call for or
schedule ingests according to security standards.

Converters (also known as translators or RDFizers)™ are an essential bridge to this
external world, which we should design for re-use and extensibility. While some may
be one-off converters (sometimes off-the-shelf RDFizers), and often devoted to large
volume external data sources, it is also helpful to emphasize one or more ‘standard’
naive external formats. A ‘standard’ external format allows for a more sophisticated
converter and enables specific tools more easily justified around the standard naive
format. In today’s environment, that ‘standard’ may be JSON or a derivative; or new
standards as they arise. Other common ‘naive’ formats could be SQL from relational
databases or other formats familiar to the community at hand.

In many ways, because we emphasize the ABox and instance records and asser-
tions in data exchange, the actual format and serialization is pretty much immate-
rial. Emphasizing one or a few naive external formats is the cost-effective approach
to tools and services. Even though the format(s) chosen for this external standard
may lack the expressiveness of RDF (because the burden is principally related to data
exchange), we can readily optimize this layer for the deployment at hand.

Other Benefits from a Canonical Model

As we can see in Figure 9-3, converters may themselves be bona fide Web services.
Besides import converters, it is also useful to have export services for the more
broadly used naive external formats. Exporters allow us to share data and schema
with external applications, up to the full expressiveness of RDFS, SKOS or OWL 2. We
may devote other services to data cleanup or attribute (property) or object reconcili-
ation (including disambiguation). In this manner, we can improve the authority and
trustworthiness of installations, while promoting favored external data standards.
Another common service is to give naive data unique IRI identifiers and to make it

% Depending on the nature of the new external content, it may also be necessary to update the knowledge
graph at this point.

194

http://openstructs.org/resources/rdfizers

KEEPING THE DESIGN OPEN

Web-accessible, thus turning it into linked data.

Such generic services are possible because the canonical RDF model is the ‘highest
common denominator’ for the system. Because RDF is the consistent basis for tools
and services, once a converter is available, and we have mapped the external infor-
mation schema to the internal structure, we can re-use all existing tools and services.
Moreover, we are now ready to share this system and its datasets with other in-
stances, within the organization and beyond.

Chapter Notes

1. Some material in this chapter was drawn from the author’s prior articles at the AI3:::Adaptive Information
blog: “Open Source Business Models" (Aug 2005); “Open Source and the ‘Business Ecosystem’ (Aug 2005);
“Climbing the Data Federation Pyramid" (May 2006); “The Open World Assumption: Elephant in the Room"
(Dec 2009); “Listening to the Enterprise: Total Open Solutions, Part 1" (May 2010); “Metamodeling in Do-
main Ontologies” (Sep 2010); “What is a Reference Concept?” (Dec 2010); “Declining IT Innovation in the En-
terprise" (Jan 2011); “We Are an Open World" (Sep 2012); “The Era of Openness" (Jan 2015); “The Impor-
tance of Semsets in Knowledge Graph Design" (Mar 2017).

2. The data is from Google book trends data based on this query (https://books.google.com/ngrams/graph?
content=open%2Cclose%2Cnear%2Copenness&case_insensitive=oné&year_start=1980&year_end=2008); the
years 2009 to 2014 were projected based on prior actuals to 1980; percentage term occurrences were con-
verted to term frequencies by 1/n.

3. Stanley, K. 0., Lehman, J., and Soros, L., “Open-Endedness: The Last Grand Challenge You’ve Never Heard
Of,” O'Reilly Media Available: https://www.oreilly.com/ideas/open-endedness-the-last-grand-challenge-
youve-never-heard-of.

4, “Creative destruction” is a term from the economist Joseph Schumpeter that describes the process of indus-
trial change from within whereby old processes are incessantly destroyed and replaced by new ones, lead-
ing to a constant change of economic firms that are winners and losers.

5. Patel-Schneider, P. F., and Horrocks, L., “Position Paper: A Comparison of Two Modelling Paradigms in the
Semantic Web,” Proceedings of the 15th international conference on World Wide Web, ACM, 2006, pp. 12-12.

6. Baader, F., Calvanese, D., McGuiness, D., Nardi, D., and Patel-Schneider, P., The Description Logic Handbook:
Theory, Implementation and Applications, Cambridge University Press, 2003.

7. Model theory is a formal semantic theory which relates expressions to interpretations. A “model” refers to
a given logical “interpretation” or “world.” (See, for example, the discussion of interpretation in Patrick
Hayes, ed., 2004. RDF Semantics - W3C Recommendation, 10 February 2004.) The logic or inference system of
classical model theory is monotonic. That is, it has the behavior that if S entails E then (S + T) entails E. In
other words, adding information to some prior conditions or assertions cannot invalidate a valid entail-
ment. The basic intuition of model-theoretic semantics is that asserting a statement makes a claim about
the world: it is another way of saying that the world is, in fact, so arranged as to be an interpretation which
makes the statement true. An assertion amounts to stating a constraint on the possible ways the world
might be. In comparison, a non-monotonic logic system may include default reasoning, where one assumes
a ‘normal’ general truth unless it is contradicted by more particular information (birds normally fly, but
penguins don’t fly); negation-by-failure, commonly assumed in logic programming systems, where one con-
cludes, from a failure to prove a proposition, that the proposition is false; and implicit closed-world as-
sumptions, often assumed in database applications, where one concludes from a lack of information about
an entity in some corpus that the information is false (e.g., that if someone is not listed in an employee
database, that he or she is not an employee.) See further, Non-monotonic Logic from the Stanford Encyclope-
dia of Philosophy.

8. Anon, “KBpedia - Open Standards,” KBpedia Available: http://kbpedia.com/standards/.
9. Princeton University, “Wngloss(7wn) Manual Page,” WordNet 3.0 Reference Manual Available: https://word-

195

http://structureddynamics.com/linked_data.html

10.

11.
12.

13.

14.

15.

16.

17.

18.

A KNOWLEDGE REPRESENTATION PRACTIONARY

net.princeton.edu/wordnet/man/wngloss.7WN.html.

See further CP 2.219-226 (1903). Also an earlier article that helps provide Peirce’s views on communications
is, “How to Make Our Ideas Clear.”

Svenonius, E., The Intellectual Foundation of Information Organization, MIT Press, 2000.

Zeng, M. L., Zumer, M., and Salaba, A., Functional Requirements for Subject Authority Data (FRSAD): A Conceptual
Model, Walter de Gruyter, 2011.

C.S. Peirce’s sign relations are covered in the Representations section of Chapter 2. In the context of this dis-
cussion, the sign corresponds to any of the labels or identifiers associated with the (reference concept) ob-
Jject, the meaning of which is provided by its interpretant. See also John Sowa, 2000. “Ontology, Metadata, and
Semiotics,” presented at ICCS'2000 in Darmstadt, Germany, on August 14, 2000; see http://www.jfsowa.com/
ontology/ontometa.htm.

A good explanation of this can be found in Rinke J. Hoekstra, 2009. Ontology Representation: Design Patterns
and Ontologies that Make Sense, thesis for Faculty of Law, University of Amsterdam, SIKS Dissertation Series No.
2009-15, 9/18/2009. 241 pp. See http://dare.uva.nl/document/144859. In that, Hoekstra states (pp. 49-50):
“RDFS has a non-fixed meta modelling architecture; it can have an infinite number of class layers because
rdfs:Resource is both an instance and a super class of rdfs:Class, which makes rdfs:Resource a member of its
own subset (Nejdl et al., 2000). All classes (including rdfs:Class itself) are instances of rdfs:Class, and every
class is the set of its instances. There is no restriction on defining sub classes of rdfs:Class itself, nor on
defining sub classes of instances of instances of rdfs:Class and so on. This is problematic as it leaves the door
open to class definitions that lead to Russell’s paradox (Pan and Horrocks, 2002). The Russell paradox fol-
lows from a comprehension principle built in early versions of set theory (Horrocks et al., 2003). This princi-
ple stated that a set can be constructed of the things that satisfy a formula with one free variable. In fact, it
introduces the possibility of a set of all things that do not belong to itself In RDFS, the reserved proper-
ties rdfs:subClassOf, rdf:type, rdfs:domain and rdfs:range are used to define both the other RDFS modelling
primitives themselves and the models expressed using these primitives. In other words, there is no distinc-
tion between the meta-level and the domain.”

Hitzler, P., Krotzsch, M., Parsia, B., Patel-Schneider, P. F., and Rudolph, S., OWL 2 Web Ontology Language
Primer, 2012.

The canonical data model is especially prevalent in enterprise application integration. An entertaining ani-
mated visualization of the canonical data model may be found at http://soa-eda.blogspot.com/2008/03/
canonical-data-model-visualized.html.

Minor exceptions, such as modeling recursion in ASN.1 (Abstract Syntax Notation), are so rarely encoun-
tered as to be dismissed.

As of the writing of this book, my census found hundreds of converters of various record and data structure
types to RDF. These converters — also sometimes known as translators or ‘RDFizers’ — take some input data
records with varying formats or serializations and convert them to a form of RDF serialization (such as
RDF/XML or N3), often with some ontology matching or characterizations.

196

	Structure of the Book 2
	Overview of Contents 3
	Key Themes 9
	What is Information? 15
	What is Knowledge? 25
	What is Representation? 32
	Information and Economic Wealth 45
	Untapped Information Assets 53
	Impediments to Information Sharing 60
	KM and A Spectrum of Applications 66
	Data Interoperability 68
	Knowledge-based Artificial Intelligence 74
	Equal Class Data Citizens 86
	Addressing Semantic Heterogeneity 90
	Carving Nature at the Joints 96
	A Foundational Mindset 107
	Firstness, Secondness, Thirdness 111
	The Lens of the Universal Categories 116
	Things of the World 129
	Hierarchies in Knowledge Representation 132
	A Three-Relations Model 140
	Logical Considerations 149
	Pragmatic Model and Language Choices 159
	The KBpedia Vocabulary 162
	The Context of Openness 176
	Information Management Concepts 184
	Taming a Bestiary of Data Structs 191
	Types as Organizing Constructs 197
	A Flexible Typology Design 204
	KBpedia’s Typologies 207
	Graphs and Connectivity 216
	Upper, Domain and Administrative Ontologies 224
	KBpedia’s Knowledge Bases 229
	Uses and Work Splits 238
	Platform Considerations 248
	A Web-oriented Architecture 253
	Tailoring for Domain Uses 260
	Mapping Schema and Knowledge Bases 265
	‘Pay as You Benefit’ 275
	A Primer on Knowledge Statistics 279
	Builds and Testing 287
	Some Best Practices 292
	Near-term Potentials 304
	Logic and Representation 310
	Potential Methods and Applications 315
	Workflows and BPM 325
	Semantic Parsing 331
	Cognitive Robotics and Agents 343
	The Sign and Information Theoretics 352
	Peirce: The Philosopher of KR 353
	Reasons to Question Premises 356
	Peirce, The Person 364
	Peirce, The Philosopher 367
	Peirce, The Polymath 375
	An Obsession with Terminology 379
	Peirce, The Polestar 381
	Resources About Peirce 382
	Components 390
	Structure 393
	Capabilities and Uses 398
	Preface
	Introduction
	Structure of the Book
	Overview of Contents
	Key Themes

	Information, Knowledge, Representation
	What is Information?
	Some Basics of Information
	The Structure of Information
	Forms of Structure
	Some Structures are More Efficient
	Evolution Favors Efficient Structures
	The Meaning of Information

	What is Knowledge?
	The Nature of Knowledge
	Knowledge as Belief
	Doubt as the Impetus of Knowledge

	What is Representation?
	The Shadowy Object
	Three Modes of Representation
	Peirce’s Semiosis and Triadomany
	Knowledge Representation in Context

	The Situation
	Information and Economic Wealth
	The X Factor of Information
	Knowledge and Innovation

	Untapped Information Assets
	Valuing Information as an Asset
	Lost Value in Information
	The Information Enterprise

	Impediments to Information Sharing
	Cultural Factors
	Tooling and Technology
	Perspectives and Priorities

	The Opportunity
	KM and A Spectrum of Applications
	Some Premises
	Potential Applications
	A Minimal Scaffolding

	Data Interoperability
	The Data Federation Pyramid
	Benefits from Interoperability
	A Design for Interoperating

	Knowledge-based Artificial Intelligence
	Machine Learning
	Knowledge Supervision
	Feature Engineering

	The Precepts
	Equal Class Data Citizens
	The Structural View
	The Formats View
	The Content View

	Addressing Semantic Heterogeneity
	Sources of Semantic Heterogeneity
	Role of Semantic Technologies
	Semantics and Graph Structures

	Carving Nature at the Joints
	Forming ‘Natural’ Classes
	A Mindset for Categorization
	Connections Create Graphs
	A Grammar for Knowledge Representation

	The Universal Categories
	A Foundational Mindset
	A Common Grounding in Peirce
	Truth is Testable and Fallible
	Upper Ontologies, Context, and Perspective
	Being Attuned to Nature

	Firstness, Secondness, Thirdness
	Constant Themes of Three
	Summary of the Universal Categories
	The Irreducible Triad

	The Lens of the Universal Categories
	An Aha! Moment
	Grokking the Universal Categories
	Applying the Universal Categories
	The Categories and Categorization

	A KR Terminology
	Things of the World
	Entities, Attributes, and Concepts
	What is an Event?

	Hierarchies in Knowledge Representation
	Types of Hierarchical Relationships
	Structures Arising from Hierarchies

	A Three-Relations Model
	Attributes, the Firstness of Relations
	External Relations, the Secondness of Relations
	Representations, the Thirdness of Relations
	The Basic Statement

	KR Vocabulary and Languages
	Logical Considerations
	First-order Logic and Inferencing
	Deductive Logic
	Inductive Logic
	Abductive Logic
	Redux: The Nature of Knowledge
	Particulars, Generals, and Description Logics

	Pragmatic Model and Language Choices
	RDF: A Universal Solvent
	OWL 2: The Knowledge Graph Language
	W3C: Source for Other Standards

	The KBpedia Vocabulary
	Structured on the Universal Categories
	Three Main Hierarchies
	The Instances Vocabulary
	The Relations Vocabulary
	Attributes Relations (1ns)
	External Relations (2ns)
	Representation Relations (3ns)

	The Generals (KR Domain) Vocabulary
	Other Vocabulary Considerations
	Components of Knowledge Representation

	Keeping the Design Open
	The Context of Openness
	An Era of Openness
	The Open World Assumption
	Open Standards

	Information Management Concepts
	Things, Not Strings
	The Idea and Role of Reference Concepts
	Punning for Instances and Classes

	Taming a Bestiary of Data Structs
	Rationale for a Canonical Model
	The RDF Canonical Data Model
	Other Benefits from a Canonical Model

	Modular, Expandable Typologies
	Types as Organizing Constructs
	The Type-Token Distinction
	Types and Natural Classes
	Very Fine-Grained Entity Types

	A Flexible Typology Design
	Construction of the Hierarchical Typologies
	Typologies are Modular
	Typologies are Expandable

	KBpedia’s Typologies
	Full Listing of Typologies
	‘Core’ Typologies
	Tailoring Your Own Typologies

	Knowledge Graphs and Bases
	Graphs and Connectivity
	Graph Theory
	The Value of Connecting Information
	Graphs as Knowledge Representations

	Upper, Domain and Administrative Ontologies
	A Lay Introduction to Ontologies
	Ontologies are A Family of Graphs
	Incipient Potentials
	Good Ontology Design and Construction

	KBpedia’s Knowledge Bases
	KBpedia KBs
	Primary KBs
	Secondary KBs
	Candidate KBs for Expansion
	Building KR Systems

	Platforms and Knowledge Management
	Uses and Work Splits
	The State of Tooling
	TBox, ABox, and Work Splits
	Content Workflows

	Platform Considerations
	Supporting Multiple Purposes
	Search
	Knowledge Management
	An Ontologies-based Design
	Enterprise Considerations

	A Web-oriented Architecture
	Web-orientation and Standards
	A Modular Web Services Design
	An Interoperability Architecture

	Building Out The System
	Tailoring for Domain Uses
	A Ten-point Checklist for Domain Use
	An Inventory of Assets
	Phased Implementation Tasks and Plan
	Domain Knowledge Graph
	Instance Data Population
	Analysis and Content Processing
	Use and Maintenance
	Testing and Mapping
	Documentation

	Mapping Schema and Knowledge Bases
	Mapping Methods and Tools
	Building Out the Schema
	Overview of Approaches
	Some Design Guidelines
	1. Be Lightweight and Modular
	2. Use Reference Structures
	3. Re-use Existing Structure
	4. Build Incrementally
	5. Use Simple Predicates
	6. Test for Logic and Consistency
	7. Map to External Ontologies

	Building Out the Instances (Knowledge Bases)
	1. Update Changing Knowledge
	2. Process the Input KBs
	3. Install, Run and Update the System
	4. Test and Vet Placements
	5. Test and Vet Mappings
	6. Test and Vet Assertions
	7. Ensure Completeness
	8. Test and Vet Coherence
	9. Generate Training Sets
	10. Test and Vet Learners
	Rinse and Repeat

	‘Pay as You Benefit’
	Placing the First Stake
	Incremental Build Outs Follow Benefits
	Learn to Quantify and Document Benefits

	Testing and Best Practices
	A Primer on Knowledge Statistics
	Two Essential Metrics, Four Possible Values
	Many Useful Statistics
	Working Toward ‘Gold Standards’

	Builds and Testing
	Build Scripts
	Testing Scripts
	Literate Programming

	Some Best Practices
	Data and Dataset Practices
	Dataset Best Practices
	Linked Data
	Knowledge Structures and Management Practices
	Organizational and Collaborative Best Practices
	Naming and Vocabulary Best Practices
	Best Ontology Practices
	Testing, Analysis and Documentation Practices
	Testing Best Practices
	Analytical Best Practices
	Documentation Best Practices
	Practical Potentials and Outcomes

	Potential Uses in Breadth
	Near-term Potentials
	Word Sense Disambiguation
	Relation Extraction
	Reciprocal Mapping
	Extreme Knowledge Supervision

	Logic and Representation
	Automatic Hypothesis Generation
	Encapsulating KBpedia for Deep Learning
	Measuring Classifier Performance
	Thermodynamics of Representation

	Potential Methods and Applications
	Self-Service Business Intelligence
	Semantic Learning
	Nature As An Information Processor
	Gaia Hypothesis Test

	Potential Uses in Depth
	Workflows and BPM
	Concepts and Definitions
	The BPM Process
	Optimal Approaches and Outcomes

	Semantic Parsing
	A Taxonomy of Grammars
	Computational Semantics
	Three Possible Contributions Based on Peirce
	#1 - Peircean POS Tagging
	#2 - Machine Learning Understanding Based on Peirce
	#3 - Peirce Grammar

	Cognitive Robotics and Agents
	Lights, Camera, Action!
	Grounding Robots in Reality
	Robot as Pragmatist

	Conclusion
	The Sign and Information Theoretics
	Peirce: The Philosopher of KR
	Knowledge and Peirce
	Time to Move from Theory to Practice

	Reasons to Question Premises
	AI is a Field of KR
	Hurdles to be Overcome
	Of Crystals and Robots

	Appendix A:
	Perspectives on Peirce
	Peirce, The Person
	Peirce, The Philosopher
	Peirce’s Architectonic
	Chance, Existents, and Continuity: Real
	Chance
	Existents
	Continuity
	What is Real
	Leaning Into Pragmatism

	Peirce, The Polymath
	Mathematics
	Cenoscopy
	Idioscopy
	Scientist
	Inventor
	Humanist, as Person

	An Obsession with Terminology
	Peirce, The Polestar
	Resources About Peirce

	Appendix B:
	The KBpedia Resource
	Components
	The KBpedia Knowledge Ontology (KKO)
	The KBpedia Knowledge Bases
	The KBpedia Typologies

	Structure
	Capabilities and Uses

	Appendix C:
	KBpedia Feature Possibilities
	What is a Feature?
	A (Partial) Inventory of Natural Language and KB Features
	Feature Engineering for Practical Limits
	Considerations for a Feature Science
	Role of a Platform

	Glossary
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

	Index

