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KR VOCABULARY AND LANGUAGES

e  have  now  armed  ourselves  with  basic  terminology  and  a  framework
around which to express a starting vocabulary for knowledge representa-

tion.  However, we have one question to answer before we can adopt the languages
(or symbol systems) we need to convey that vocabulary: What current languages can
capture Peirce’s theory of logic while being consistent, coherent, and practical for
our needs in knowledge representation? To resolve that question, we need to delve
deeper into Peirce’s logic  and options provided by current language choices.  The
practical choices resulting from these intersecting forces will then enable us to spec-
ify our starting KR vocabulary into a working language suitable for computers.

W

A vocabulary, in the sense of knowledge systems or ontologies, may and should be
expandable, but it is also a controlled vocabulary.1 That is, we declare new terms and
relations  to  the  system  and  define  them  at  levels  required  by  the  formalism  to
achieve the vocabulary’s purpose. Terminology is  a social process,  driven by user
needs and the occasional ‘surprising fact,’ such as the emergence of the Internet or
smartphones, that requires our terms to adapt and our knowledge to grow. Our vo-
cabularies also serve other purposes, such as providing consistent labels to user in-
terfaces or helping interoperate with other knowledge sources. 

Early in my exposure to semantic technologies, I encountered the phrase ‘onto-
logical commitment.’1 This phrase was common in the early literature, and, for some
reason, I found the idea off-putting. It seemed to me it conveyed buying into one on-
tology versus another, and I did not like the idea of boxing myself in. There is a sig -
nificant plurality within the semantic technology community that does not like the
idea of a governing schema. what is sometimes pejoratively called “one ring to rule
them all.”3

I have come to embrace a very different view when it comes to the idea of repre-
senting knowledge representation. If one believes in reality and truth, and that the
purpose of knowledge is to further the understanding of truth, then a knowledge
representation  system  must  be  based  on  logics  and  formalisms that  can capture
knowledge of every sort and can provide coherent and testable means for discover-
ing and testing new knowledge. 

1 See, for example, Davis et al.2 from 1993.
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As we will see in the context of the logics and the languages we have chosen for
this task, the idea is not to decide what is true and what is false. Our primary objec-
tive is not to pass judgment on such topics as fake news. Instead, the design is to test
new information we introduce to the system — a system which we deem already to
be correct and true within the limits of our assertions — as to whether that new in-
formation is  consistent and coherent.  We first  test  for consistency in syntax and
grammar, and for minimally acceptable completeness. If the new information meets
the threshold and does not violate the knowledge graph already in place — that is,
we deem it  coherent  — we accept that new information. If  the new information
meets the threshold but violates what we already have, we either reject it as incoher-
ent, or we revise the existing assertions to reflect this new information. In this way,
new information may cause us to change the knowledge graph in the system. True,
we could extend this basis to test for the falsity of news or other information. How-
ever, the more technical point is  that we premise our starting basis on ‘open’ as-
sumptions consistent with the nature of knowledge, as I discuss in the next chapter. 

These absolute groundings are further essential to provide a consistent and logi-
cal basis for computers to test and analyze current and new assertions. We want the
representations available (that is, features) for machine learning to reflect and adapt
to truth as we test it. While I dislike the phrase ‘ontological commitment,’ its very
scariness  helps  cement  the importance  of  inspecting  (and  re-inspecting)  the  for-
malisms upon which we base our knowledge representation systems.

In creating a feature-rich logic machine for AI, we, of course, want a system that
is  sound,  consistent,  coherent, and relatively  complete.  Sound is an evaluative criterion
where all provable statements are valid in all models. Consistent is where all axioms1

in the knowledge base (domain), subject to deductive reasoning, are true (or, at least,
exhibit no contradictions). Coherent is where the knowledge base (domain) is consis-
tent and has a high degree of conjunction for non-deductive assertions.2 Complete is
an evaluative criterion where all statements that are true in the model are provable
and meet minimum standards. 

Our interpreters are both artificial agents and humans. We need us, as humans, to
scope the domain and provide the vocabulary,  then to construct and oversee the
knowledge graph, and then to maintain and extend the system, and lastly to review
tests and tentative assignments before we agree to commit to the knowledge base.
These aspects must be suitable for direct translation into any human language. Hu-
mans will  also have many non-AI uses for the knowledge system, reinforcing the
need for understandability and usability. To complete the speculative grammar leg of
Peirce’s theory of logic, we also need to capture factors relevant to the Secondness of
critic, the methods of logic, and to the Thirdness of the methodeutic, the application of
these methods to practical problems addressed with practical means.

1 An axiom is a premise or starting point of reasoning. In an ontology, each statement (assertion) is an axiom.

2 Coherence has a long history within epistemic logic,4with more recent trends toward accommodating proba-
bilistic measures, though specific methods lacking broad consensus. Peirce’s views would tend to align co-
herence with abduction and pragmatism. Researchers that embrace aspects of Peirce’s approach include 
Roche5 and Douvan and Meijs.6 
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LOGICAL CONSIDERATIONS

KR practitioners know that the choice of a formalism (i.e., syntax and language)
for knowledge representation involves a trade-off in expressivity and practicality.7

Knowledge graphs and knowledge bases should be scoped based on their anticipated
domain of use and populated with ‘vivid’ knowledge.8 We cannot feasibly specify all
aspects  of all  items while remaining computationally tractable.  We need to  infer1

connections,  properties,  and  relationships  without  explicitly  stating  all  of  them.
When we do make assignments, we need to know what those statements entail based
on prior statements.2 We base inference and entailment on the underlying KR lan-
guage, as applied through its defined and understood vocabulary and semantics.9 

We could derive the logic that governs our semantics from multiple logic families.
One option is propositional logic, but unfortunately  this logic evaluates  statements
such as “Aristotle is a philosopher” and “Plato is a philosopher” as unrelated. An-
other option is set theory, with its basis in sets and members and strong mathemati-
cal background. However, set theory lacks predication and ideas of identity and can
be problematic for the largest of sets. Advances have continued in set theory, such
that the basis for a complete KR language may be at hand.10 But these limitations led
mathematicians and logicians in the 19th century, noted previously, to work out the
new logic of relations. We now call this field predicate calculus or first-order logic
(FOL). Paternal rights to FOL are granted to both Peirce7and Frege, though both ap-
parently worked without the others knowledge.12

Peirce attempted to explicate the basis, applicability and interpretation of deduc-
tive,  inductive,  and abductive logic,  the latter of which he introduced to modern
logic. Peirce’s primacy of logic proceeds as follows: Decompose every statement into
its fundamental premises. Conduct all logical tests, including the implications result-
ing from inference. Single out anomalies or ‘surprising facts’ for special attention
subject to the pragmatic maxim. Every bit of Peirce’s logical work has applicability to
knowledge representation.

First-order Logic and Inferencing

First-order logic is superior to propositional logic in that it allows variables and
quantifiers. FOL enables us to say ‘x is a philosopher,’ where we treat the subject as a
variable and turn ‘is a  philosopher’ into a predicate. We can establish relations be-
tween these predicates with logical connectors, such as AND, OR, NOT and IF-THEN
statements. We may base class membership on intensional13 or  extensional14 grounds.
We can apply quantifiers to statements using universal (‘for every’) and existential

1 Inference is the act or process of deriving logical conclusions from premises known or assumed as true. The 
logic within and between statements in an ontology is the basis for inferring new conclusions from it, using 
software applications known as inference engines or reasoners.

2 Entailment is a consequence arising from a statement deemed true based on some underlying logic. The logi-
cal consequence is said to be necessary and formal; necessary, because of the rules of the logic (the conclu-
sion is the consequent of the premises); and formal because the logical form of the statements and argu-
ments hold true without regard to the specific instance or content.
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(‘there exists’) quantifiers, as well as use negation. FOL is  sound (all provable state-
ments are true in all models) and complete (all statements which are true in all mod-
els are provable). Moreover, Peirce based his ‘beta’ version of existential graphs on
FOL plus identity. Because of these efforts, we view Peirce as one of the founders of
first-order logic.

FOL  is  a  powerful  and  expressive  formalism  for  knowledge  representation.15

Gödel's completeness theorem proved that deduction in FOL is sound and complete.
Still, Alonzo Church and Alan Turing proved independently, in 1936 and 1937, that
FOL under certain conditions, notably the halting problem or quantification over in-
finite  sets,  was undecidable.  What this  means is  a  computer may never calculate
some problems to a final result. Various options that reduce the expressivity of FOL
have been formulated to overcome the problem of reliably computing to completion.
We will speak of one of them, descriptive logics, shortly.

One of the KR formalisms, conceptual graphs, is a complete expression of FOL and
is patterned on Peirce’s existential graphs.16 Some proponents call for KR formalisms
that  can  handle  higher-order  logics,  such  as  predicates  of  predicates.  Recent  at-
tempts to bridge description logics to category theory using underlying ideas are in-
triguing and redolent of Peirce.17 KR and its logical and formal underpinnings, I be-
lieve, are set to undergo a renaissance.

Inferencing is the drawing of new facts, probabilities or conclusions based on rea-
soning over existing evidence. Inferencing is a common term heard in association
with semantic  technologies.  Inference engines (also  known as  reasoners,  semantic
reasoners,  reasoning  engines,  or  rules  engines)  are  the  application  components.
Peirce classed inferencing into three modes: deductive reasoning, inductive reason-
ing, and abductive reasoning. Deductive   reasoning   extends from premises known as
true and clear to infer new facts. Inductive reasoning looks at the preponderance of
evidence to infer what is probably true. A  bductive   reasoning   poses possible explana-
tions or hypotheses based on available evidence, often winnowing through the possi-
bilities based on the total weight of evidence at hand or what is the most practical
explanation. Though we may apply all three reasoning modes to knowledge graphs,
the standard and most used form is deductive reasoning. Knowledge base comple-
tion, a new field, sometimes uses inductive reasoning. Abductive reasoning, to my
knowledge, has not been applied to knowledge graphs. Inductive and abductive log-
ics offer much additional leverage for a knowledge system, and I expect to see their
use increase given their potential usefulness.

We can use inferencing to broaden and contextualize search, retrieval, and analy-
sis.  We can create inference tables  in advance and layer them over existing  data
stores for speedier use and the automatic invoking of inferencing. More complicated
inferencing means that models can also perform as complete conceptual views of the
world or knowledge bases. Quite complicated systems are emerging in such areas as
common sense and biological systems, as two examples.

We can apply inference engines at the time of graph building or extension to test
the consistency and logic of the new additions. Additionally, we may apply semantic
reasoners to a current graph to expand queries for semantic search or other reason-
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ing purposes. As noted, as inductive and abductive reasoners become available, they
will expand this list of capabilities to include question answering, hypothesis genera-
tion and testing, forecasting, decision making, and real-time systems in robotics. The
contributions these types of tools will make is dependent upon the method of logic
inference. Based on their syllogistic form, here is a comparison of the three meth-
ods:18

Deduction Induction
Hypothesis/
Abduction1

All M is P (Rule) S is M (Case) S is P (Result)

S is M (Case) S is P (Result) All M is P (Rule)

S is P (Result) So, All M is P (Rule) So, S is M (Case)

Table 8-1: Syllogistic Forms for Inference Methods

Peirce explicated deductive and inductive reasoning in the clearest of ways and
corrected erroneous views of what constituted inductive reasoning. He most impor-
tantly recognized that, just as many problems are distributive in nature, so are many
of the logical questions. For this, Peirce decomposed the basic syllogism of the Greek
philosophers to articulate a third kind of inference, abductive reasoning. “Deduction
proves that something must be, Induction shows that something actually is operative,
Abduction merely suggests that something may be.” (1903, EP 2:216)

Deductive Logic

Deduction is the “tracing out the consequences that would ensue upon the truth
or falsity of that hypothesis” (nd, MS [R] S64). “By Deduction, or mathematical rea-
soning, I mean any reasoning which will render its conclusion as certain as its Pre-
misses, however certain these may be.” (1911, MS [R] 856:2) 

Deduction is the most common logic in knowledge representations in their cur-
rent form. We use deductive logic to infer hierarchical relationships, create forward
and backward chains, to check if domains and ranges are consistent for assertions, as-
semble attributes applicable to classes based on member attributes, conform with
transitivity  and  cardinality  assertions,  and  check  virtually  all  statements  of  fact
within  a  knowledge  base.  In  backward  chaining,  we  conduct  the  reasoning  tests
‘backward’ from a current consequent or ‘fact’ to determine what antecedents can
support that conclusion, based on the rules used to construct the graph. (“What rea-
sons bring us to this fact?”) In  forward chaining the opposite occurs; namely, we
state a goal or series of goals, and then existing facts (as rules) are checked to see
which ones can lead to the goal (“A goal X may be possible because of?”). The rea-
soner iterates the process until the goal is reached or not; if reached, we may add

1 In his later years Peirce revised his views about abduction; see Chapter 15.
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new knowledge  using  heretofore unstated connections to the knowledge base. We
base consistency tests solely on deductive logic. Either an asserted statement satisfies
specifications, or it fails. 

Like  so  much  Peirce  did,  he  continued  to  refine  his  understanding  of  things
through inspection and categorization. Here is one of his later formulations for de-
duction: 

“A Deduction is an argument whose Interpretant represents that it belongs to a general
class of possible arguments precisely analogous which are such that in the long run of
experience the greater part of those whose premisses are true will have true conclu-
sions.  Deductions  are  either  Necessary or  Probable.  Necessary Deductions  are  those
which have nothing to do with any ratio of frequency, but profess (or their interpre-
tants profess for them) that from true premisses they must invariably produce true
conclusions. A Necessary Deduction is a method of producing Dicent Symbols by the
study of a diagram. It is either Corollarial or Theorematic. A Corollarial Deduction is one
which represents the conditions of the conclusion in a diagram and finds from the ob-
servation of this diagram, as it is, the truth of the conclusion. A Theorematic Deduc-
tion is one which, having represented the conditions of the conclusion in a diagram,
performs an ingenious experiment upon the diagram, and by the observation of the
diagram, so modified, ascertains the truth of the conclusion. Probable Deductions, or
more accurately, Deductions of Probability, are Deductions whose Interpretants rep-
resent them to be concerned with ratios of frequency. They are either  Statistical De-
ductions or Probable Deductions Proper. A Statistical Deduction is a Deduction whose In-
terpretant represents it to reason concerning ratios of frequency, but to reason con-
cerning them with absolute certainty. A Probable Deduction proper is a Deduction
whose Interpretant does not represent that its conclusion is certain, but that precisely
analogous reasonings would from true premisses produce true conclusions in the ma-
jority of cases, in the long run of experience.” (1903, EP 2:297-298; CP 2.267-268)

At present, most current knowledge approaches only use what Peirce calls the ‘nec-
essary’ deduction. Peirce placed deductive reasoning in Secondness, though he did
consider other placements early in his career.1 The placement in Secondness, how-
ever, does make sense because it is the logic of actualness, and whether actual things
conform to the premises asserted for them. 

Inductive Logic

Induction is  “any reasoning from a  sample to  the whole sampled” (1911,  NEM
3:178),  with  the  sample  taken  at  random.  Induction  is  the  probabilistic form  of
Peirce’s reasoning triad. Peirce placed the inductive form of reasoning in Thirdness,
consistent with its nature of potential. 

Peirce wrote much on induction. One succinct summary is that “Induction con-
sists in starting from a theory, deducing from it predictions of phenomena, and ob-
serving those phenomena to see how nearly they agree with the theory.” (1903, EP

1 Staat19 concurs that the placement of the three types of inferential logic into Firstness, Secondness and 
Thirdness is the order of abduction, deduction and induction, though, when considered in the order of in-
quiry, it is abduction, induction, deduction. This has been a matter of some confusion to scholars. 
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2:216) And, “... observe that neither Deduction nor Induction contributes the smallest
positive item to the final conclusion of the inquiry. They render the indefinite defi -
nite; Deduction Explicates; Induction evaluates: that is all.” (1908, CP 6.475) Some of
his longer passages from his later career expound further on this nature:

“The validity of Induction consists in the fact that it proceeds according to a method
which though it may give provisional results that are incorrect will yet, if steadily
pursued, eventually correct any such error. The two propositions that all Induction
possesses this kind of validity, and that no Induction possesses any other kind that is
more than a further determination of this kind, are both susceptible of demonstration
by necessary reasoning.” (1906, NEM 4:319)

And:

“The true guarantee of the validity of induction is that it is a method of reaching con-
clusions which, if it be persisted in long enough, will assuredly correct any error con-
cerning future experience into which it may temporarily lead us. This it will do not by
virtue of any deductive necessity (since it never uses all the facts of experience, even
of the past), but because it is manifestly adequate, with the aid of retroduction and of
deductions from retroductive suggestions, to discovering any regularity there may be
among experiences, while utter irregularity is not surpassed in regularity by any other rela-
tion of parts to whole, and is thus readily discovered by induction to exist where it does
exist,  and the  amount  of  departure  therefrom  to be  mathematically  determinable
from observation where it is imperfect.” (1908, CP 2.769)

Consistent with the universal categories, Peirce also saw three subdivisions, or
types, within inductive reasoning, with the first being crude induction:

“The first and weakest kind of inductive reasoning is that which goes on the presump-
tion that future experience as to the matter in hand will not be utterly at variance
with all past experience. Example: ‘No instance of a genuine power of clairvoyance has
ever been established: So I presume there is no such thing.’ I promise to call such rea-
soning crude induction.... Crude induction is the only kind of induction that is capable
of inferring the truth of what, in logic, is termed a universal proposition.” (1908, CP
2.756-7)

The second type of induction is the strongest of the three, what Peirce called quanti-
tative induction:

“This [type] investigates the interrogative suggestion of retroduction,  ‘What is  the
‘real probability’ that an individual member of a certain experiential class, say the S’s,
will have a certain character, say that of being P?’ This it does by first collecting, on
scientific principles, a ‘fair sample’ of the S’s, taking due account, in doing so, of the
intention of using its proportion of members that possess the predesignate character
of being P. This sample will contain none of those S’s on which the retroduction was
founded. The induction then presumes that the value of the proportion, among the S’s
of the sample, of those that are P, probably approximates, within a certain limit of ap-
proximation, to the value of the real probability in question. I propose to term such
reasoning Quantitative Induction.” (1908, CP 2.758)
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Lastly, the third type, intermediate between the prior two:

“The remaining kind of induction, which I shall call  Qualitative Induction, is of more
general utility than either of the others, while it is intermediate between them, alike
in respect to security and to the scientific value of its conclusions. In both these re-
spects it is well separated from each of the other kinds. It consists of those inductions
which are neither founded upon experience in one mass, as Crude Induction is, nor
upon a collection of numerable instances of equal evidential values, but upon a stream
of experience in which the relative evidential values of different parts of it have to be
estimated according to our sense of the impressions they make upon us.” (1908, CP
2.759)

In the first type, crude induction, we may only only detect falsity if we persist the
inference long enough. In the strongest second type, quantitative induction, the sam-
ple is a sub-collection of a population of units; its inductive strength arises from be-
ing able to apply the theory of errors. The third type,  qualitative induction, does not
have the advantage of definite populations, but, as we enlarge the sample, the infer-
ential evidence gets stronger. (1904, EP 2:302)

Inductive logic is only at the beginning phases of application to knowledge sys-
tems, with a leading computational approach for general purposes being inductive
logic programming (ILP).20 Induction has been used for question answering and to ex-
pand search21 and in areas like knowledge base completion, learning,22 and schema
induction.23 These  thrusts  deserve  more  attention,  particularly  in  light  of  the
Peircean bases emphasized throughout this book. Most machine learning involving
knowledge bases is a form of inductive reasoning.

Abductive Logic 

One of Peirce’s signal achievements was to bring the idea of abduction to modern
logic. Peirce wrote and revised his views on abduction* over his entire working life.
A consistent thread in his characterization was that abduction is a kind of inference
that originates a hypothesis by concluding in an explanation, though an indetermi-
nant one for a given observation, often of a curious or surprising nature. Peirce stud-
ied abduction because of his belief in its essential role in the scientific method, as
well as the unique inferential and logical possibilities it allowed. Peirce went so far as
to state that pragmatism is the “logic of abduction” (1903, CP 1.595 ff.). He also called
the combination of abduction with induction an ‘analogy’ (1896, CP 1.65). In 1903 he
offered the following syllogistic form for abduction (CP 5.189, EP 2:231):

“The surprising fact, C, is observed;
But if A were true, C would be a matter of course,
Hence, there is reason to suspect that A is true.”

This part of the inference chain begins with the ‘surprising fact’ or an event or ques-
tion. By 1911, however, Peirce wrote, “I do not, at present, feel quite convinced that
any logical form can be assigned that will cover all ‘Retroductions’ [abductions]. For
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what I mean by a Retroduction is simply a conjecture which arises in the mind.”
(NEM 3:203-4) However, he also claimed that abduction is the “only kind of reasoning
that opens new ground.” (NEM 3:206) Though the syllogistic form still works, Peirce
came to believe there was a qualitative and ‘guessing’ or ‘instinctual’ aspect to some
abductions, which we need in any case to subject to the pragmatic test. In that same
year of 1911 he more broadly stated:

“By Retroduction [abduction1] I mean that kind of reasoning by which, upon finding
ourselves confronted by a state of things that, taken by itself, seems almost or quite
incomprehensible, or extremely complicated if not very irregular, or at least surpris-
ing;  we are led to suppose that  perhaps there is,  in fact,  another definite  state of
things, because, though we do not perceive any unequivocal evidence of it, nor even
of a part of it, (or independently of such evidence if it does exist,) we yet perceive that
this supposed state of things would shed a light of reason upon that state of facts with
which we are confronted, rendering it comprehensible, likely (if not certain,) or com-
paratively simple and natural.” (1911, MS [R] 856:3-4)

One way to understand Peirce's insight on abduction, though unclear this was his
actual method, is to split the idea of hypothesis generation and testing into two parts
and re-think their roles. In abduction, the conscious and unconscious mind when
faced with a choice rapidly screens and mentally evaluates possible explanations for
possible outcomes to test. Multiple possible pathways may explain the diverse poten-
tial results. Since the actual testing of a hypothesis using inductive logic incurs time
and expense, we try to weigh, in our minds, the potential importance of the hypothe-
sis and its likelihood of results against the time and cost to generate them. A careful
weighing in our mind of potentials and costs invokes other signals and perceptions,
some  perhaps  unconscious,  such  that  we  may  often  express  our  selections  as  a
'guess.' As part of his belief in the continuity of nature, however, Peirce also noted
how often guesses are correct compared to random likelihood.

“Abduction and induction have, to be sure, this common feature, that both lead to the
acceptance of a hypothesis because observed facts are such as would necessarily or
probably result as consequences of that hypothesis. But for all that, they are the oppo-
site poles of reason, the one the most ineffective, the other the most effective of argu -
ments. The method of either is the very reverse of the other's. Abduction makes its
start  from the facts,  without,  at  the outset,  having any particular  theory in view,
though it is motived by the feeling that a theory is needed to explain the surprising
facts. Induction makes its start from a hypothesis which seems to recommend itself,
without at the outset having any particular facts in view, though it feels the need of
facts to support the theory. Abduction seeks a theory. Induction seeks for facts. In ab-
duction, the consideration of the facts suggests the hypothesis. In induction, the study
of  the hypothesis  suggests  the experiments  which bring to light  the very facts  to
which the hypothesis had pointed. The mode of suggestion by which, in abduction,
the facts suggest the hypothesis is by resemblance, -- the resemblance of the facts to
the consequences of the hypothesis. The mode of suggestion by which in induction
the hypothesis suggests the facts is by contiguity, -- familiar knowledge that the con-

1 Alternate terms used by Peirce for abduction included retroduction, hypothesis, and presumption.
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ditions of the hypothesis can be realized in certain experimental  ways.” (1901,  CP
7.218)

In succinct terms, and Peirce's definition (1908) for retroduction, it is “the pas-
sage of  thought from experiencing something,  E,  to  predicating a concept of  the
mind’s creating; the subject of the predication being a specified class to which E be-
longs, or an indefinite part of such class.” (MS [R] 842: 29-30) In more modern terms,
we can define abduction (or abductive reasoning) as a mode of symbolic inference
that involves the screening and selection from a domain D of the possible explana-
tion paths to an outcome O, possibly involving any element E of D, with the selection
of candidate paths for inductive testing based on plausibility, economy and potential
impact.  Abduction  does  not  produce  probable  results,  only  qualified  candidates
(most often called hypotheses).

Redux: The Nature of Knowledge

Having discussed the three types of inferential logic, let’s now turn our attention
to the logical context for knowledge, which was a third of the emphasis in Chapter 2.
Knowledge, after all, is not merely counting peas or tallying results but is the discov-
ery and verification of ‘facts’ about the world sufficient to generate belief. A useful
framework for evaluating this context goes under the ideas of closed or open worlds.

The closed world assumption, or CWA, is the presumption that what is not currently
known as true is false. CWA also has a logical formalization. CWA is the most com -
mon logic applied to relational database systems and is particularly useful for trans-
action-type systems. In knowledge management, for which OWA is most often the
best choice, we may use the closed world assumption in two situations: 1) when the
knowledge base is known as complete (e.g., a corporate database containing records
for every employee); or 2) when the knowledge base is known as incomplete, but we
must derive a ‘best’ definite answer from incomplete information.

The  open world assumption, or  OWA, is a formal logic assumption that the truth-
value of a statement is independent of whether or not any single observer or agent
know it. OWA directly conforms to Peirce’s view of reality, knowledge, and truth.
Missing values are expected and do not falsify what is there. A corollary assumption
is  that we will always be adding  more information to the system, and the design
should promote that fact. OWA is used in knowledge representation to codify the in-
formal notion that in general no single agent or observer has complete knowledge,
and therefore cannot make the closed world assumption. The OWA limits the kinds of
inference and deductions an agent can make to those that follow from statements
that are known to the agent as true (or probably true).

OWA is useful when we represent knowledge within a system as we discover it,
and where we cannot guarantee that we have discovered or will discover complete
information. Of course, this is the very essence of knowledge. In OWA, we may con-
sider statements about knowledge that are not explicitly stated or inferred as un-
known, rather than wrong or false.
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Besides this contextual perspective, logic constructs may bring other expressive
properties. Here are some of the more important ones that warrant consideration for
a KR language:

 Cardinality — is where the number of members in a class or type is set or limited,
such as hasBiologicalParent set to a cardinality of two;

 Disjoint — is where membership in one class excludes membership in another;
this is a useful property in that it  allows us to ‘slice-and-dice’ large, well-de-
signed knowledge bases for more effective processing or analysis;

 Domain (property) — a statement that declares the classes or types from which
to draw the subject of the assertion;

 Function — is any algebraic or logical expression allowable by the semantics and
primitives used in the KR language where an input is related to an output;

 Inverse — is  when a property,  say,  hasParent,  can be defined as the inverse
property of hasChild;

 Negation — is a unary operation that produces a value of true when its operand is
false and a value of false when its operand is true; 

 Range  (property)  — a statement that declares  the classes  or  data types from
which to draw the object data or types of an assertion;

 Reflexivity — is when every element of X is related to itself, every class is its own
subclass, such as every person is a person;

 Rules — we may supplement the underlying logic with rules engines (if-then, ex-
clusions, inclusions) that may add further to the specifications allowed;

 Symmetric — is when A relates to B exactly if it relates B with A; and

 Transitivity — is when item A is related to item B, and item B is related to item C,
then A is also related to C; this is the critical property for establishing inheri-
tance chains.

The use or not of these constructs both may affect how reasoners operate in a knowl-
edge base and may add to the feature pool available to machine learners. An optimal
KR language would provide all of these capabilities.

In operating KR and knowledge management systems, closed world applications
can interface with the open world graph of the KR system via agreed, canonical data
transfer models. Proper design can readily integrate simulation models, search en-
gines,  forecasting software,  language processors,  or transaction systems with the
knowledge representation, enabling all parts to contribute to their strengths. Given
the importance of context to knowledge representation, we devote much of Chapter 9
to the open world topic. We discuss architectures and platform designs that enable
integrating closed and open systems in Chapter 13. 
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Particulars, Generals, and Description Logics

We began our logic discussion centered on first-order logic, and its suitability to
our KR needs, save for its lack of decidability. Early researchers in knowledge repre-
sentation developed description logics specifically to overcome this lack, as well as
other pragmatic considerations around KR.24 Description logics are one of the under-
pinnings to the semantic Web. They grew out of earlier  frame-based logic systems
from Marvin Minsky and also semantic networks. Description logics (DLs) as a term
and discipline  were first defined in the 1980s by  Ron Brachman, among many oth-
ers.24 DLs or fragments thereof are quite akin to FOL, but slightly less expressive,
lacking negation or the unique name assumption, as examples. DLs can (usually) be
made decidable, that is, able to resolve all mathematical expressions in the language,
while FOL is not. Description logics firmly embrace the open world assumption, a
central aspect of knowledge systems, as we continue discussing in the next chapter. 

One aspect of description logics and their semantics is that they traditionally split
concepts and their relationships from the different treatment of instances and their
attributes and roles. This split corresponds nicely to the split between generals and
particulars, respectively, that we have adopted from Peirce. In description logics, we
know the concept split as the TBox (for terminological knowledge, the basis for T in
TBox) and the instance split as the ABox (for assertions, the basis for A in ABox). A
TBox is a conceptualization associated with a set of facts. TBox statements describe
this conceptualization through a set of concepts and relationships between them. In
its entirety, a TBox specifies the schema for the conceptualization; that is, an ontol-
ogy. All generals, from a Peircean perspective, belong to the TBox.

The ABox is the complement that describes the instances (or instance records) and
their attributes that populate that conceptualization. In these regards,  extensional
relationships dominate in the TBox, intensional ones in the ABox.1 Though no formal
or actionable  difference exists  between the ABox and TBox in  description logics,
keeping them separate is often a practical design choice.

Of course,  the choice of KR logic and formalism must consider how to handle
other types of relations and the whole panoply of trade-offs incurred during actual
implementation, including importantly usability, toolsets and maintenance. None of
these logical  options prevents,  in  and of  themselves,  making inconsistent  assign-
ments or perhaps introducing cycles or other errors into our knowledge bases. What-
ever logic or formalism we choose, it is essential to test for internal consistency and
coherence. Keeping proven reasoners at the ready while developing is but one exam-
ple of best practices when building or maintaining knowledge bases. I discuss these
and related best practices in Chapter 14.

1 One confusing aspect is that some computer science database textbooks use the term 'intension' to refer to 
the schema of a database, and 'extension' to refer to particular instances of a database,25 an unfortunate use
also by one of the major textbooks in description logics.24 Peirce noted similar confusions long ago (c.f., CP 
2.393), and as a result tended to use the term comprehension over intension. 
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PRAGMATIC MODEL AND LANGUAGE CHOICES

The preceding discussion on logic has informed us about how to select a desirable
knowledge representation language. We want a language that can model and capture
intensional and extensional relations; one that potentially embraces all three kinds
of inferential logic; that is decidable; one that is compatible with a design reflective
of particulars and generals; and one that is open world in keeping with the nature of
knowledge. We want this KR language, or languages, to accommodate Peirce’s guid-
ance, especially that related to practicality and various use and adoption criteria. In
short,  we  seek  pragmatic  choices  that  balance  the  trade-off  in  expressivity  and
tractability.

Many, especially in the semantic Web community, have chosen topic maps or the
Resource Description Framework (RDF) as their sole modeling basis. At the more ex-
pressive  end of  the  spectrum,  others  have  advocated  conceptual  graphs  and the
more powerful constructs of first-order logic. We have chosen more of a middle path:
we use RDF as our data model language while using the Web Ontology Language, OWL
2, as our language for the knowledge graph, and the basis for mapping to external in-
formation sources. Both RDF and OWL 2 conform to description logics, and both are
open, standardized efforts from the World Wide Web Consortium. Via these choices,
we also gain access to many other standards and tools from the W3C, as the remain-
der of this section describes.

RDF: A Universal Solvent

RDF (Resource Description Framework) is a family of World Wide Web Consortium
(W3C) specifications originally designed as a metadata model. In practice, RDF has be-
come a general method  for modeling information through a variety of syntax for-
mats.  In RDF, we make statements about resources in the form of subject-predicate-ob-
ject expressions, called triples.

A triple may sound fancy, but substitute verb for predicate and noun for subject and
object. In other words: Dick sees Jane; or, the ball is round. It may sound like a kinder-
garten reader, but it is how we can easily represent data and build it  up into more
complex vocabularies and structures.  We combine multiple statements  to flesh out
our understanding of individual things. Since subjects or objects may act as ‘nodes’ to
one another (the predicates act as connectors or ‘edges’), we may create hierarchical
and relationship structures as we add statements (see  Figure 1-2). As we aggregate
these node-edge-node triple statements, a network structure emerges, known as the
RDF graph.

The referenced ‘resources’ in RDF triples have unique identifiers,  IRIs, that are
Web-compatible  and  Web-scalable,  such  as  http://mkbergman.com/me/about.rdf.
These identifiers can point to precise definitions of predicates or refer to specific
concepts or objects, leading to less ambiguity and clearer meaning or semantics.

We can apply RDF triples equally to  unstructured (say, text),  semi-structured (say,
HTML documents) or structured data sources (say, standard databases). This flexibility
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makes RDF almost a ‘universal solvent’ for representing data structure.1 By defining
new types and predicates, we can create more expressive vocabularies within RDF.
This expressiveness enables RDF to define controlled vocabularies with exact seman-
tics.26 These features make RDF a powerful data model and language for data federa-
tion and interoperability across disparate datasets.

We represent instance data simply as key-value pairs (also known as a name–value
pairs or attribute–value pairs), where the subject is the instance (particular) itself, the
predicate is the attribute, and the object is the value. We may express all or part of the
data model as a collection of tuples <attribute name,value> where each element is
a key-value pair. The key is the defined attribute, and the value may be a reference to
another object or a literal string or value. In the base form of the RDF data model,
useful in describing static things or basic facts, we keep it simple: no range or do-
main constraints; no existence or cardinality constraints; and no transitive, inverse
or symmetrical properties. A combination of these for the same subject forms an in-
stance record, part of the ABox as noted above. A dataset is a combination of one or
more records, transmitted as a single unit (though we may break it into parts due to
size), including simple text files. 

Because of RDF’s universality and open standards, a  vibrant ecosystem exists of
translators  to  alternate  syntaxes,  languages,  and  serializations,  with  JSON  and
straight text (through comma-separated value and RDF formats) being the most pop-
ular. Because of its diversity of serializations and its simple data model, it is also easy
to  create  new  converters  using  RDF.  Generalized  conversion  languages  such  as
GRDDL provide framework-specific conversions, such as for microformats. Once in a
standard RDF representation, it  is  straightforward to incorporate new datasets or
new attributes, and to aggregate disparate data sources as if they came from a single
source. This universality enables meaningful composition of data from different ap-
plications regardless of format or serialization. 

RDFS (RDF Schema) is the next layer in the RDF stack designed to overcome some
of the baseline limitations. RDFS introduces new predicates and classes that bound
these semantics. Importantly, RDFS establishes the basic constructs necessary to cre-
ate new vocabularies, principally through adding the class and subClass declarations
and adding domain and range to properties (the RDF term for predicates). RDFS supplies
the basic data types used in the vocabulary, which are pre-defined ways that attribute
values may be expressed, including various literals and strings (by language), URIs,
Booleans, numbers,  and date-times.2 Many useful  RDFS vocabularies exist,  and it is
possible to apply limited reasoning and inference support against them. We can also
use this intermediate canonical form, now with a bit of added schema, to communi-
cate queries, context selections, and labels and forms for user interfaces.  The RDFS
structure and label properties allow us to populate context-relevant dropdown lists
and auto-complete entries in user interfaces solely from the input data and struc-
ture. This ability is generalizable using a reasonably straightforward input schema.

1 See Chapter 10.

2 See, for example, XSD (XML Schema Definition) for more information
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Thus, RDF is a framework for modeling all forms of data, for describing that data
through vocabularies, and for interoperating that data through shared conceptual-
izations and schema. We can represent, describe, combine, extend and adapt data
and their organizational schema flexibly and at will using the HTTP protocol. Impor-
tantly, via existing or easily constructed converters, we can do this without the need
to change what already exists. We can augment our existing relational data stores,
and transfer and represent our current information as we always have. The RDF data
model provides an abstract, conceptual framework for defining and using metadata
and metadata vocabularies, as well as for our primary purpose of representing a mes-
sage or data in a readily consumable form. In our design, RDFS is the language mostly
focused on the ABox.

OWL 2: The Knowledge Graph Language

We need something more expressive and powerful for the conceptual and reason-
ing aspects of the TBox. Our choice, again a W3C standard, is OWL 2, the Web Ontol-
ogy  Language  designed  for  defining  and  instantiating  formal  Web  ontologies,  or
knowledge graphs.  An OWL ontology may include descriptions of  classes,  along with
their related properties and instances. A variety of OWL dialects may be employed, spe-
cialized to process more quickly for different specific needs, such as rule testing or
querying. OWL 2 is the primary formalism used in KBpedia.1 OWL 2 provides nearly
complete capabilities  from description logics and  offers some tricks of its  own in
metamodeling. An inspection of OWL’s standardized direct semantics provides fur-
ther detail in these regards.27

Before OWL 2, the initial version of OWL was more challenging to ensure decid-
ability. The earlier version also did not allow users to treat classes as instances de-
pending on context. Fortunately, OWL 2 added a metamodeling technique called pun-
ning. When used for ontologies, it means to treat a thing as both a class and an instance,
with use depending on context.

While we are using OWL 2 as our standard KBpedia language, we are not relying
on OWL’s distinction of object and datatype properties for external relations and at-
tributes, respectively. External relations, it is true, by definition are object proper-
ties,  since both subject  and object  are  identifiable  things.  However, attributes,  in
some cases such as rating systems or specific designators, may also refer to con-
trolled vocabularies, which can (and, under best practice, should) be object proper-
ties. So, while most attributes use datatype properties, not all may. Relations and at-
tributes are a better cleaving since we can use relations as patterns for fact extrac-
tions and the organization of attributes gives us a cross-cutting means to understand
the characteristics of things independent of the entity type. So while the splits most
often conform to object properties for external relations and datatype properties for
attributes, relying on this split is not dependable.2 In any case, all of these assign-

1 References herein to OWL refer to OWL 2 unless otherwise noted.

2 For interoperability with external datasets where our logic model and vocabulary provides, we allow as-
signment of either object or datatype properties, which we reconcile at the schema level.
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ments become valuable potential features for machine learning, in addition to the
standard text structure.

OWL provides  sufficient  expressive  richness  to  describe  the  relationships  and
structure of entire  worldviews, or the so-called terminological (TBox) construct in
description logics. Thus, we see that the complete structural spectrum of description
logics can be satisfied with RDF and its schematic progeny, with a bit of an escape
hatch for combining poorly defined or structural pieces using undecidable OWL frag-
ments.

W3C: Source for Other Standards

We can use  many other  W3C standards in  the system for  graphics  standards,
rules, selected vocabularies, translators and validators, and the like.28 I will mention
only three of the prominent ones we use. The first capability is  the RDF query lan-
guage, SPARQL,29 which provides querying of either the ABox or TBox or driving re-
ports and templated data displays. Utilizing RDF’s simple triple structure, SPARQL
can also be used to query a dataset without knowing anything in advance about the
data,  which is  a  useful  discovery mode.  The second contributor  is  the Simplified
Knowledge Organizational System (SKOS) vocabulary, which we use as a concept clas-
sification language;30 see further discussion of SKOS below. The last notable contribu-
tion is linked data, which is a set of recommended techniques and guidelines for ex-
posing RDF resources to the Web. It is the right technique to use if open sharing. The
Linking Open Data movement that is promoting this pattern has become highly suc-
cessful, with billions of useful RDF statements now available for use and consumption
online. 

THE KBPEDIA VOCABULARY

In  Chapter  7 we discussed the main terminological  aspects  to  our approach to
knowledge  representation,  grounded  in  Peirce’s  universal  categories  of  Firstness,
Secondness, and Thirdness, the topic of Chapter 6. We then added commentary about
logical and inferencing needs, with pragmatic choices being made for the W3C lan-
guages to implement these design considerations. We are now in a position to pro-
vide a working introduction to the KBpedia vocabulary and the upper structure of its
knowledge graph, the KBpedia Knowledge Ontology, or KKO. We supplement these
materials with online resources and further KBpedia details; see Appendix B.

By design, this introduction is only a summary. KBpedia is under active use and
development as of the time of this writing, and we expect details to change, perhaps
in material respects. As a result, I try to keep the summary and explanations general
enough to retain some longevity. Again, for the current specifications, see the online
resources.1

1 KBpedia and its documentation are available for free under open source licensing; for current specifications
and downloads see http://kbpedia.org.
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Structured on the Universal Categories

In keeping with the universal categories, we organize KBpedia under the standard
RDF root of ‘Thing’1 into the three main and sole branches of Monads (Firstness, 1ns or
1),  Particulars  (Secondness, 2ns or 2), or Generals (Thirdness, also called SuperTypes,
3ns or 3). We also tend to categorize the upper structure of KBpedia, formally known
as the KBpedia Knowledge Ontology, or KKO, in a triadic manner. This triad follows
the senses of possible building blocks (1ns), actual things in the category (2ns), and
generalizations about the category (3ns).  Applicable categories in the upper struc-
ture may be prefixed with 1, 2, or 3 to keep track of these splits. We list the features
available for machine learning in Appendix C.

The  Monads branch (1ns) captures the qualities, constituents, characteristics, or
attributes of the actual things or general realities that comprise human knowledge.
We can talk about these things, but, once we do, we instantiate the quality, so that
our  actual  statements  and  assertions  about  these  things  occur  in  the  other  two
branches. Nonetheless, from a modeling standpoint, it is still possible to relate state-
ments about monads to their placements in the knowledge graph, enabling some rea-
soning, if desired, by proxy, using this branch. The  Particulars branch (2ns) repre-
sents all individual, real things across which knowledge may pertain. Entities and
events are the two main sub-branches of the particulars, with the third sub-branch
being the instantiation of monads. The Generals branch (3ns), the third of the three,
comprises all concepts, types, and generalizations we may make about the things to
which knowledge may refer, as well as the concepts and generalizations that apply to
knowledge itself and how it is represented and communicated. Its three main sub-
branches represent constituents of reality, relations (predications), and manifesta-
tions, including matter, life, and symbols. KBpedia’s upper triadic structure is the do-
main of discourse for knowledge representation and its potential scope. Naturally,
since it is absurd to capture all instances or all generalities related to knowledge, KB-
pedia is not a complete representation. Instead, it is a scaffolding of the more pivotal
joints in the knowledge skeleton, which provide reference tie-ins for specific knowl-
edge domains to expand coverage using similar construction methodologies.

By comparison, please note that most existing KR graphs or ontologies  corre-
spond to the Generals branch in our design, with the data or ABox corresponding to
the  Particulars branch in KBpedia and KKO. However, none of these other existing
systems are triadic, and none are explicit about modeling meaning or context.

Three Main Hierarchies

We embed three hierarchical backbones within the KKO structure. One is for in-
stances (particulars) that correspond to the ABox. One is for relations.  The third is
for classes, types, and generalities, corresponding to the TBox. I overview these three
backbones under the instances, relations, and generals vocabulary sections below.

1 ‘Thing’ is the same as ‘resource’ in RDF and is the existential starting node for an OWL knowledge graph.
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 The Instances Vocabulary 

More than 95% of the knowledge items in KBpedia are instances, either entities or
events.  The constituent knowledge bases for these include Wikipedia and Wikidata,
described in Chapter 11. All instances in KBpedia belong to one or more types, which
are the subject of the Generals branch. However, we may use different characteristics
to describe and compare instances to one another, as shown in Table 8-2 below. These
descriptions relate to how we characterize the instances, not where they occur in the
general conceptual schema. These items may be discovered and inspected using the
online KBpedia browser.1 Hopefully, most of these items are pretty clear. You may
obtain full definitions and other contextual specifications from the open source KKO
artifact. 

The Monoidal Dyads sub-branch captures the items in the Monad main KKO branch,
previously noted, as reified as actual instances. Its triadic splits follow the general
form. Events were discussed at length in Chapter 7, and capture the span from Peirce’s
absolute chance (tychism, or spontaneity) to his Thirdness of synechism.

2-Particulars
1-Monadic Dyads

1-Monoidal Dyad
2-Essential Dyad
3-Inherential Dyad

2-Events
1-Spontaneous
2-Action

1-Exertion
2-Perception
3-Thought

3-Continuous
1-Triadic Action
2-Activities
3-Processes

3-Entities
1-Single Entities

1-Phenomenal
2-States

Situations
3-Continuants

Time
1-Instants
2-Intervals
3-Eternal

Space

1 See http://kbpedia.org/knowledge-graph/; links for how to use are provided on that same page. 
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Points
Areas

2D-Dimensions
Space/Regions

3D-Dimensions
2-Part Of Entities

1-Members
2-Parts
3-Functional Components

3-Complex Entities
1-Collective Stuff
2-Mixed Stuff
3-Compound Entities

Table 8-2: Full, Upper Hierarchy of the KBpedia Particulars1

Actions are the actual instances of action and may arise from perception, exertion or
thought, as previously discussed. Entities span from single ones, according to the uni-
versal categories, to parts of entities and then combinations of entities, again in cor-
respondence with the categories. Complex entities may span from simple collections to
mixtures to compound ones, the latter best exemplified by the constituent entities
comprising the whole universe.

To my knowledge, no existing knowledge graph or ontology other than KBpedia
provides a similar classification scheme for the nature of instances, likely  because
none of the other systems are modeled using Peircean perspectives.

The Relations Vocabulary

I provided a fairly detailed introduction to the Relations vocabulary in  Chapter 7.
We model these relations as  abstract possibilities under the relational monads (2ns
and 3ns) in the  Monads main branch. We model these relations as concepts used in
knowledge representation according to the  Predications branch of 2ns in  Table 10-2.
Note KKO represents the concepts of these relations, in addition to the relational ex-
pressions themselves. In KKO, we provide the specific relations as object or datatype
properties  (or  both),  depending.  We  include  the  separate  listing  of  relations  as
classes so that we may talk about and reason over them as concepts. Using them in ac-
tual triples requires the properties.

Since we already introduced the top-level of the relations in Chapter 7, let’s move
on to the next two levels. The next Table 8-3 shows the second level of the relations
hierarchy, with the following Table 8-4 showing the third-level. I will highlight some
aspects of these tables where they may not be entirely evident, according to the 1ns,
2ns, and 3ns relation sub-branches.

1 Various downloads of KKO and KBpedia may be obtained from https://github.com/Cognonto/kko. To view 
the KKO artifact, you will need an ontology editor, such as the open source Protégé ontology development 
environment.
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ATTRIBUTES RELATIONS (1NS)

Attributes are  the  intensional  characteristics  of  an  object,  event,  entity,  type
(when viewed as an instance), or concept. We split  attributes into three categories.
The  intrinsic relations  are  innate  characteristics  or  essences  of  single  entities  or
events (particulars). Example concepts include oneness, qualities, feelings, inherent,
negation, is, has, intensional, naturalness, internal, innateness. Qualities, one intrin-
sic sub-branch, are an internal characteristic or aspect of an object; collectively these
define intensionally what types to which the object belongs, though that relationship
is not intrinsic. Elementals are a contributing part of or integral input or aspect that
adds to the understanding  of the subject.  Configurations, or forms or arrangements,
are of the nature or perceivable of the subject.  The adjunctual are occurrences that
may occur to single entities or events (particulars) that help characterize it. Example
concepts  include birth,  death,  marriage,  events  for the individual,  accidents,  sur-
prises, happenings, extrinsic, adjunctual. Though Peirce used ‘accidental’ much, he
applied it in most cases to ‘accidental actuals’; thus, ‘adjunct’ better captures poten-
tiality. Within adjunctuals we have quantities, characteristics of a subject that we ex-
press as a  numerical quantity;  eventuals, chance, accidental or planned occurrences
that directly involve a subject; or  extrinsics,  which are external events or circum-
stances that directly involve the subject or help define the nature or reality of it.

The  contextual relations  are  circumstances  or  placements  of  single  entities  or
events (particulars) that help characterize it. Example concepts include space, time,
continuity, and classificatory. These relations include anything that has gradation
over space and time, including ideas and concepts that also shade. The three sub-
branches of the contextual relations are: situants (1ns), which are attributes or char-
acteristics that help situate, or place the subject in a locational or time context; rat-
ings (2ns), which are an assigned value or characterization that orders the subject in
relation to other subjects; or  classifications (3ns), which are characterizations of the
subject in  regard to multi-factor typing, coding or value in relation to a given at-
tribute or set of attributes. 

EXTERNAL RELATIONS (2NS) 

External relations are assertions between an object, event, entity, type, or concept
and another particular or general.  External relations also have three sub-categories,
with the first (1ns) being  direct, which are simple relationships (no intermediaries)
between two different objects considered as instances. Example concepts include is a,
simple without parts, part of, members in types or classes, or genealogical roles (par-
ent,  child,  brother).  Direct  relations,  in turn,  have three sub-branches,  including:
equivalences, a simple relationship that asserts  equality or sameness;  parts, a simple
relationship where the object is a part or component of the subject; or descendants,
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which are a simple relationship where the object has a genealogical, subsumption, or
supersumption relationship to the subject.

The Copulative relations are the 2ns sub-branch of the External Relations. They con-
vey combination, membership, quantity, action, or joins.31 The three sub-branches
include typings, all of the is-a relations to types; actions; and conjoins, relations that in-
volve the joining of a subject to an object via an intermediate object. We should note
that the two sub-branches of external relations to this point, the direct and copulative,
represent the simple relations according to Peirce’s logic of relatives.32

The last sub-branch in Thirdness of the External Relations is the Mediative relations,
which are the true, triadic external relations, such as ‘A gives B to C.’  These are the
relationships of relevance, meaning, explanation, or cognition. Sub-branches of the
mediative relations are comparisons;  performances, which are relations of quantity or
rank for how a subject performed in relation to an object; or cognitives, which relate
to thinking, knowing or representing. While we might consider thoughts as some-
thing that occurs internally, thoughts are not innate and are internal representa-
tions of the external world.

REPRESENTATION RELATIONS (3NS)

The Thirdness branch of relations is the  Representations,  which are signs (1905, CP
8.191) and the means by which we point to, draw or direct attention to, or designate,
denote or describe a particular object, entity, event, type or general. The first Repre-
sentation sub-branch is the denotatives, icons or symbols that name or describe the
subject. Its three sub-branches are: media, iconic images or sounds that invoke the
identification with a given object or representation; labels, symbolic text strings that
help name or draw attention to a particular object; or descriptions, text strings that
may be longer than labels and provide additional or contextual information or spec-
ify attributes about the object, beyond drawing attention.

The second branch of  the  Representations is  the  indexes,  indirect  references  or
pointers that help draw attention to the subject. Indexes are references or attention-
directors to a subject.33 The three sub-branches of  indexes are:  pointers,  physical or
symbolic indicators of a given thing and which draw attention to it;  identifiers, such
as URIs, which are generally (unique) symbols or strings that provide a key to a given
subject, often within some conventional scheme for generating and recognizing the
token assigned; and codes, an assigned symbolic token or string that groups the ob-
ject with similar items. 

The last branch (3ns) of the  Representations is the associatives,  contextual asser-
tions of  proximity,  affiliation or adjacency of  the subject to any contiguity.34 The
three sub-branches are: lists,  either ordered or unordered aggregations of objects
similar to one another with respect to given characters or types;  relateds (see also),
which are indicators of some nature to other objects similar or related to it; or aug-
ments, which are an external indicator that leads to still further explanations. 

Current practice rarely incorporates any of these vocabulary aspects — discussed
in the sections above on monads, particulars, and relations — in knowledge graphs and
ontologies.  The Peirce-inspired design of  these first  and second branches of KKO
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demonstrate a logical, recursive approach to organizing knowledge domains. These
aspects provide a deeper, more abstract pool of features of possible use to machine
learners. Reasoning tasks should also see a jump-step up in capabilities.

The Generals (KR Domain) Vocabulary

The core of KBpedia, as it is for most current knowledge graphs, is the TBox, or
the conceptual schema for the domain. This KKO branch is populated entirely with
generals and is where most current reasoning with knowledge graphs occurs. This
central schema is also the point at which it is best to link external knowledge bases
into the system.1 Because of this mapping role, we term the nodes in the  Generals
branch as reference concepts (or RefConcepts or RCs). All RCs are OWL classes. More than
95% of the 55,000 current base concepts in KBpedia are RCs. These RCs provide a rich
pool of tie-in points for enabling integration with external sources.

The RCs are organized into natural hierarchies of related kinds or types, what we
term typologies.2 Typologies are multi-instance hierarchies; each one has a top-level
node called a SuperType. The distribution of typologies in KBpedia covers the scope of
substantive human knowledge, and all of the SuperTypes, by design, are part of the
upper KKO knowledge graph. Also, we design the typologies as disjoint (non-overlap-
ping) with one another where possible, which promotes efficiency in reasoning and
other analyses. Typologies are explained further in Chapter 10.

We provide a complete view of the upper  Generals branch in  Table 10-1,  in the
chapter on typologies. The structure of the Generals branch follows our understanding
of Peirce’s universal categories. Note the structure enables us to organize and rea-
son over predicates and attributes, as well as the more standard classes of things
that encompass the knowledge domain. Further, via ties to the other two main KB-
pedia branches, Monads and Particulars, we can also significantly expand the abstract
characterization and reasoning of all things within that domain.

Other Vocabulary Considerations

Before we close out discussion of the KBpedia vocabulary, we need to touch upon
two further considerations: the vocabulary terms provided by W3C standards and the
vocabulary  for  mapping  external  sources  to  KBpedia.  As  the  following  Table  8-5
shows, we rely much on the SKOS vocabulary in KBpedia for various annotation la-
bels and some conceptual relationships. We use RDFS for SKOS, property range and
domain declarations, and property hierarchies. OWL is used to declare classes and to
split our properties into annotations, object properties, and datatype properties. 

SKOS, or the Simple Knowledge Organization System,30 is a formal language and
schema  designed  to  represent  such  structured  information  domains  as  thesauri,
classification  schemes,  taxonomies,  subject-heading  systems,  controlled

1 While instance mappings are possible, it is more effective to define relationships at the class level, since 
member instances can then be inherited without direct assignment.

2 These are a critical design component of our approach, which we discuss at length in Chapter 11.
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vocabularies, or others; in short, most of the ‘loosely defined’ ontology approaches
discussed herein. It is a W3C initiative more fully defined in its SKOS Core Guide. As
an RDF Schema, SKOS adds some language and defined relationships to the RDF base-
line. SKOS also has a rich set of annotation and labeling properties to enhance the
human readability of schema developed in it. 

RDFS rdfs:domain
rdfs:range
rdfs:subClassOf 
rdfs:subPropertyOf

OWL owl:AnnotationProperty
owl:Class
owl:DatatypeProperty
owl:disjointWith
owl:equivalentClass 

SKOS-Preferred skos:altLabel 
skos:broaderTransitive
skos:definition
skos:hiddenLabel 
skos:narrowerTransitive 
skos:prefLabel

SKOS-Optional skos:broader 
skos:changeNote 
skos:editorialNote 
skos:example 
skos:historyNote 
skos:narrower
skos:note
skos:related
skos:scopeNote

Table 8-5: External Mapping and Annotation Properties

As noted, the Generals branch is the target for mapping to external sources. The
design approach is to define the classes in KBpedia broadly and to consider external
mappings of the subClassOf nature. What this means is that the parental concept in
KBpedia tends to subsume the concepts in the contributing external sources, and to,
therefore,  inherit  the instances brought in by external  classes.1 However,  not all
mappings  represent  class-to-class  relationships.  Further, some  mappings  may  be
more of the nature of intersections or partial overlaps, rather than complete inheri-
tance. As a result, KBpedia has adopted multiple mapping predicates, some approxi-
mate, as shown in Table 8-6:

1 Due to OWL 2 and punning (c.f., Chapter 9), depending on context, we can talk about the classes in the Gener-
als branch as instances and characterize them, while they can still act as classes for mapping and logical in-
heritance purposes.
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correspondsTo The property correspondsTo is used to assert a close correspondence between an exter-
nal class, named entity, individual or instance with a Reference Concept class. corre-
spondsTo relates the external class, named entity, individual or instance to the class 
by both its subject matter and intended scope. This predicate should be used where 
the correspondence between the two entities is felt to be nearly equivalent to a 
sameAs assertion and is reflexive, but without the full entailments of intensional class 
memberships. In these cases, both entities are understood to have the same type and 
intended scope, but without asserting a full class-level or sameAs individual relation-
ship. 

This predicate is for aligning two different ontologies or knowledge bases based on 
node-level correspondences, but without entailing the actual ontological relation-
ships and structure of the object source. For example, the correspondsTo predicate 
may be used to assert close correspondence between Reference Concepts and 
Wikipedia categories or pages, yet without entailing the actual Wikipedia category 
structure. This property asserts a different and stronger relationship than isAbout. 

isAbout The property isAbout is used to assert the relation between an external named entity, 
individual or instance with a Reference Concept class. isAbout relates the external 
named entity, individual or instance to the class by its subject matter. The relation 
acknowledges that the scope of the class cannot be determined solely by the aggrega-
tion or extent of its associated individual entity members and that the nature of the 
Reference Concept class may not alone bound or define the individual entity. This 
property is therefore used to create a topical assertion between an individual and a 
Reference Concept. 

isRelatedTo Check the definition of isAbout for the definition of this property; isRelatedTo is the in-
verse property of isAbout. 

relatesToXXX The various properties designated by relatesToXXX are used to assert a relationship 
between an external instance (object) and a particular (XXX) SuperType. There may 
be as many relatesToXXX properties as there are numbers of SuperTypes. The asser-
tion of this property does not entail class membership with the asserted SuperType. 
Rather, the assertion may be based on particular attributes or characteristics of the 
object at hand. For example, a British person might have a relatesToXXX asserted rela-
tion to the SuperType of the geopolitical entity of Britain, though the actual thing at 
hand (person) is a member of the Person class SuperType. This predicate is used for 
filtering or clustering, often within user interfaces. Multiple relatesToXXX assertions 
may be made for the same instance. 

isLike The property isLike is used to assert an associative link between similar individuals 
who may or may not be identical, but are believed to be so. This property is not a gen-
eral expression of similarity, but rather the likely but uncertain same identity of the 
two resources. 
This property is an alternative to sameAs where there is not a certainty of sameness, 
and when it is desirable to assert a degree of overlap of sameness via the hasMapping 
reification predicate. This property can and should be changed if the certainty of the 
sameness of identity is subsequently determined. 

isLike has the semantics of likely identity, but where there is some uncertainty that 
the two resources indeed refer to the same individual with the same identity. Such 
uncertainty can arise when, for example, we use common names for different individ-
uals (e.g., John Smith). 
It is appropriate to use this property when there is strong belief the two resources re-
fer to the same individual with the same identity, but that association cannot be 
made at present with full certitude. 
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hasMapping The hasMapping property is used to reify isAbout, isRelatedTo or an isLike property as-
sertion with a statement as to its degree of mapping or relationship between subject 
and object. The hasMapping property may be expressed as a mapping percentage 
value, some quantitative metric value, or a qualitative descriptor characterizing the 
linkage degree or overlap between the two classes, predicates, individuals or 
datatypes. This value might be calculated from some external utility, may be free 
form, or may be based on some defined listing of mapping values expressed as liter-
als. 

hasCharacteristic The property hasCharacteristic is used to assert the relation between a Reference Con-
cept, or any other classes, and external properties that may be used in external on-
tologies to characterize, describe or provide attributes for data records associated 
with that concept or that class. It is via this property or its inverse, isCharacteristicOf, 
that external data characterizations may be incorporated and modeled within a do-
main ontology based on the KBpedia vocabulary. 

isCharacteristicOf The property isCharacteristicOf is used to assert the relation between a property and a 
Reference Concept (or its punned individual), or any other classes, to which it applies.
Such properties may be used in external ontologies to characterize, describe, or pro-
vide attributes for data records associated with that concept or that class. It is via this
property or its inverse, hasCharacteristic, that external data characterizations may be 
incorporated and modeled within a domain ontology. 

Table 8-6: Mapping and Alignment Relations

We cover the general topic of mapping in some detail in Chapter 13.
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