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THE PRECEPTS

o gain the opportunities in artificial intelligence and knowledge management,
we need to look the world squarely in the eye and tackle realities as they exist.

As a philosopher, Charles S. Peirce was a confirmed and staunch defender of realism,
though he was also an idealist in his belief that truth, while not perhaps knowable in
its absolute limits, could be increasingly discovered through the application of logic
and the scientific method. Pragmatism is the way forward to approach this ideal.

T

The world is a messy place. Not only is it complicated and richly diverse, but our
ways of describing and understanding it are made more complex by differences in
language and culture. We know the world is interconnected and interdependent. Ef-
fects of one change can propagate into subtle and unforeseen consequences. Not only
is the world always changing, but so is our understanding of what exists in the world
and how it affects and is affected by everything else. This continuous flux means we
are always uncertain to a degree about how the world works and the dynamics of its
working. Through education and research we continually strive to learn more about
the world, but often in that process find what we thought was true is no longer so
and even our human existence is modifying our world in manifest ways.1

Knowledge is very similar to this nature of the world. We find that knowledge is
never complete and we can see it anywhere and everywhere. We capture and codify
knowledge  in  structured,  semi-structured  and  unstructured  forms,  ranging  from
‘soft’ to ‘hard’ information. We find that the structure of knowledge evolves with the
incorporation of more information. We often see that knowledge is not absolute, but
contextual. That does not mean truth does not exist; rather knowledge should be co-
herent, to reflect a logical consistency and structure that comports with our observa-
tions about the physical world. Knowledge, like the world, is  continually changing;
we thus must adapt to what we observe and learn.

Chapter 3 pointed to the importance of information to economic growth. We saw
the breakpoint accelerations in growth tied to historical changes in the cost and ac-
cess to information. Future generations will surely come to see the Internet phenom-
enon as one of those transitions. Massive storehouses of information, under free and
open licenses, are available at our fingertips. None of these sources were designed for
interoperability at a concept or knowledge level, and each has its context, format,
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and terminology. Here is a practically unlimited source of useful information that, by
applying our approaches and principles to semantic technologies and interoperabil-
ity, we can tap for digital reasoning and learning. 

To tap this storehouse of information, to connect and make the information us-
able with other information, we need to understand what makes that information in
its raw form a  Tower of Babel. To overcome these differences we need to embrace
some premises — or precepts — about how our information exists in its native forms,
and then to adopt still  further propositions for how to put that information on a
common  footing.  These  precepts  relate  to  the  nature  of  data,  semantic  hetero-
geneities in what that data means, and how we organize and classify that data. These
precepts help set the ground rules for our actions going forward.

EQUAL CLASS DATA CITIZENS

Knowledge representation, by our definition, operates in an electronic medium
with messages conveyed in bits, which makes all information represented in the sys-
tem as data. To deal in the realm of knowledge and belief, the purpose of our KR sys-
tems, we must be able to ingest and process any electronic data in any form that can
contribute to our knowledge.1 We include any digital information artifact in this cat-
egory, including ‘soft’ or ‘hard’ information, social information, information of vary-
ing certainty, and information of diverse provenance. We thus define content as in-
formation that has the potential to contribute to knowledge.

These variations are what would be called syntactic, or the structure or form of
the information, though content ambiguities also lead to an entirely different plane
of differences, those of a semantic nature. Whatever these differences of structure,
format or content, as long as the information represented is a possible contributor to
knowledge, we must be able to ingest and process it. Knowledge management sys-
tems must treat all data forms with a potential to contribute to knowledge as equal
class citizens.

1 While streaming media alone does not meet this definition, transcripts or tags associated with the content 
do.
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The Structural View

A favorite, and I think useful, split of content is according to its native structure;
that is, the structure it assumes when created for its primary purpose. One of these
groupings is  st  ructured data  ,  what we most often think of when we hear the term
‘data.’ This classification is where the information presented is according to a de-
fined data model, commonly found in relational databases or other forms of tabular
data, such as even an electronic spreadsheet. This information includes any managed
by database management software, but it can also be as simple as an HTML table for
the Web. We can model, organize, form, and format structured data in ways that are
easy for us to manipulate. Much of our current know-how related to data and its
management comes from our decades-long experience with structured data. 

The second grouping of content is  u  nstructured data  ,  mostly consisting of text,
which lacks an explicit data model or schema. (But it does comport with the ‘struc-
ture’ of natural languages.) All documents and output from word processors or edi-
tors fall into this category, as do transcriptions of talking or speech. For decades, re-
searchers have estimated the amount of information within an enterprise embedded
in text documents  to approximate  80% of available information;  some recent esti-
mates put that contribution at 90%.2 Whatever the number, the percentage of infor-
mation in  documents  represents  the preponderance of  what  might  be useful  for
knowledge purposes within the organization. 

The third grouping of content is thus semi-structured data, which is of more recent
vintage. This category of content does not conform to a formal tabular or structural
data model but gets its ‘semi-structured’ nature by embedding tags or other markers
to denote fields within the content. We obtain it from unstructured data via  data
mining or  information extraction. Separate annotations not embedded within the
text, as is the case for metadata, are also part of this grouping. Markup languages em-
bedded in text are a common form of such sources. 

Semi-structured data provides  something of  a  ‘middle  ground’  between struc-
tured and unstructured sources. Semi-structured data models are sometimes called
‘self-describing’ (or schema-less).3 The first known definition of semi-structured data
dates to 1993 by Peter Schäuble.4 More current usage also includes the notion of la-
beled graphs or trees with the data stored at the leaves, with the schema information
contained in the edge labels of the graph. Semi-structured representations also lend
themselves well to data exchange or the integration of heterogeneous data sources.
Another nice aspect of semi-structured formats is that they are readable as text, with
a structure that can be understood and assigned by non-programmers without dedi-
cated IT staff. Semi-structured data is the preferred form for annotations.

To date, we have good processing engines for specific semi-structured forms, such
as rendering HTML in a Web browser or reading XML data sources, but inadequate
engines  for  combining  different  forms  of  semi-structured  data.5 Moreover,  semi-
structured data is the basis for including unstructured text with structured data, but
we still have the issues of extracting structure from various formats.
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The Formats View

Broad categorizations by content, while useful for generalizing, mask the ways we
can express these unstructured, semi-structured, and structured forms in various file
formats. Since no ‘official’ repository for file formats exists, it is impossible to know
how many different flavors of formats exist in the wild. The most extensive reference
that I have found, kept on Wikipedia, lists nearly  1500 different file formats from
AAC (audio coding)  to  zoo (file  compression).9 Perhaps this  sounds worse than it
should because these file formats span entire application areas from documents to
archives to audio or video or gaming. Further, skewed power-law distributions mean
only a fraction of these formats account for most uses. Individual application areas,
such as word processing or spreadsheets, have merely scores or hundreds of formats.
What we experience in the wild is also the subset of more popular formats, though in
a medium as broad as the Web, Google has found tens of thousands of individual
schemata.7 Single enterprises may need only deal with a few score common formats,
rather than thousands, with perhaps only a few dominant formats in given applica-
tion areas. Word processors, for example, might be mandated or standardized. Still,
even in this area, much readable text in multiple other formats is available.

Structured or semi-structured data formats also have a schema, in addition to the
serialization formats used for transmittal. Some markup languages, such as HTML or
Markdown, have embedded tags that instruct how to render Web pages or guide the
user interface. Other markup languages, such as fielded text, structured text, simple
declarative language (SDL), or more recently YAML or its simpler cousin JSON, have
become more widely adopted and supported by formal specifications, tools or APIs.
Many prefer JSON, for example, as a form for Web applications. Some formats, like
microformats or  BibTeX records, rely less on syntax conventions and may use re-
served keywords (such as AUTHOR or TITLE) to signal the key for the key-value pair. 

These various forms, sometimes well specified with APIs and sometimes almost
ad hoc as in spreadsheet listings, are what we call ‘structs.‘ Structs can all be displayed
as text and have, at a minimum, explicit or inferrable key-value pairs to convey data
relationships and attributes, with data types and values often noted by various white
space, delimiter (such as angle brackets) or other text conventions. Some of these
simple formats have been more successful than others, though none have achieved
market dominance. Few universal principles have emerged as to syntax or format.
One positive is that most of these various struct forms are easy for casual users to un-
derstand and easy for domain experts to write.

The sheer number of file formats one may encounter in the wild (including within
the single organization) is such that pairwise translators between forms are not com-
binatorially possible. The only way to handle the diversity of forms and formats is to
establish one or a limited few canonical formats and to translate wild forms to those
formats. This scalable approach to federation is a central topic of Chapter 9.

The Content View
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Refer to Jimmy Johnson by his name, and you might be referring to a former
football coach, a  NASCAR driver, a former  boxing champ, a  blues guitarist, or per-
haps even a plumber in your hometown. Alternatively, perhaps your Jimmy is none
of these individuals. The label ‘Jimmy Johnson’ is insufficient to establish identity. As
another example, let’s take the seemingly simple idea of ‘cats.’ In one source, the fo-
cus might be on house cats, in a second domestic cats, and in a third, cats as pets. Are
these ideas the same thing? Now, let’s bring in some taxonomic information about
the  cat  family,  the  Felidae.  We have  now  expanded  the  idea  of  ‘cats’  to  include
lynxes, tigers, lions, cougars and many other kinds of cats, domestic and wild (and,
also extinct). The ‘cat’ label used alone clearly fails us miserably here. 

As a third example, let’s take the concept or idea of the named entity of  Great
Britain: 

Depending on usage and context, Great Britain can refer to quite different scopes
and things. In one sense, Great Britain is an island. In a political sense, Great Britain
can comprise the territory of England, Scotland, and Wales.  Even more, precise un-
derstandings of that political grouping may include some outlying islands such as the
Isle of Wight,  Anglesey, the  Isles of Scilly,  the  Hebrides,  and the island groups of
Orkney and Shetland. Sometimes the Isle of Man and the Channel Islands, which are
not part  of the United Kingdom, are included in error in that political  grouping.
Then, in another context, Great Britain may also include Northern Ireland, since the
two countries sometimes combine their sports teams. These, plus other confusions,
can mean quite different things when referring to ‘Great Britain’ as the Venn dia-
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gram of possibilities shows us in Figure 5-1.1 
Even with the same label, items in different information sources can refer to the

same thing, but may not be the same thing or may define it with a different scope
and content. Ambiguity is one source for such error, as our examples show. If we in-
correctly identify the object, then connections can get drawn that are in error, which
is why disambiguation is such a big deal in knowledge systems. In broad terms, these
mismatches can be due to structure, domain, data or language, with many nuances
within each type. 

Data without context and relationships are meaningless. Logic and consistency al-
most by definition imply the application of a uniform perspective, a single  world-
view. Multiple authors making contributions without a common frame of reference
or viewpoint are unable to bring this consistency of perspective.  The  sameAs ap-
proach used to connect items in many current Web systems when they ignore such
heterogeneities, makes as little sense as talking about the plumber using facts drawn
from the blues guitarist. Even if we  can overcome the syntactic and format differ-
ences already discussed, we still face the hurdle of bridging the semantics of the data
federation pyramid shown in Figure 5-1.

ADDRESSING SEMANTIC HETEROGENEITY

The idea of something — that is, its meaning — is conveyed by how we define that
something, the context in which we use the various tokens (terms) for that some-
thing, and in the variety of words or labels we apply to that thing. The label alone is
not enough. We convey the idea of a parrot by our understanding of what the name
parrot means. In languages other than English, the same idea of parrot may be con-
veyed by the terms Papagei, perroquet, loro, , or попугай, or オウム, depending on the
native language. The idea of the ‘United States,‘ even just in English, may be conveyed
with labels ranging from America to  US,  USA,  U.S.A.,  Amerika,  Uncle Sam, or even the
Great Satan. What these examples illustrate is that a single term is more often not the
only way to refer to something, and a given token may mean vastly different things
depending on context. The oft-heard phrase, ‘things, not strings,’ captures this un-
derlying fact.8 

Sources of Semantic Heterogeneity

Our understanding of the patterns in semantic heterogeneities — for which we
need to account in the design of our knowledge systems  explicitly — is pretty ma-
ture.  We see confusion potentially arising from multiple terms for a single thing;2

single terms applying to numerous things; terms whose meaning derives from con-
text; how we characterize things; how we relate things; how we indicate surety or
confidence; how we point to things; and, how to annotate things. 

1 These associations also vary over time, again well evidenced by the scope of ‘Great Britain.’

2 Though true synonyms are rare, our practical interest is to capture alternate labels for the same thing. 
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Pluempitiwiriyawej  and  Hammer  provided  one  of  the  first  comprehensive
schemes  for  classifying  semantic  heterogeneities.9 I  have  used  and added  to  this
schema over many years. By decomposing this space into its various sources of se-
mantic heterogeneities — as well as the work required to provide for such functions
as search, disambiguation, mapping, and transformations — we can begin to under-
stand how all of these components can work together to help achieve data interoper-
ability. 

The following Table 5-1 shows more than 40 sources of semantic heterogeneities,
structurally organized, each of which is a possible impediment to get data to interop-
erate across sources: 

Class Category Subcategory Examples Type 12

LANGUAGE

Encoding

Ingest Encoding Mis-
match For example, ANSI v UTF-813 Concept

Ingest Encoding Lack-
ing

Mis-recognition of tokens be-
cause not being parsed with 
the proper encoding 13

Concept

Query Encoding Mis-
match

For example, ANSI v UTF-8 in 
search 13 Concept

Query Encoding Lack-
ing

Mis-recognition of search to-
kens because not being parsed 
with the proper encoding 13

Concept

Languages

Script Mismatch
Variations in how parsers han-
dle, say, stemming, white spa-
ces or hyphens

Concept

Parsing / Morphologi-
cal Analysis Errors 
(many)

Arabic languages (right-to-left)
v Romance languages (left-to-
right)

Concept

Syntactical Errors 
(many)

Ambiguous sentence refer-
ences, such as I’m glad I’m a 
man, and so is Lola (Lola by Ray 
Davies and the Kinks)

Concept

Semantics Errors 
(many)

River bank v money bank v bil-
liards bank shot

Concept

CONCEPTUAL Naming Case Sensitivity Uppercase v lower case v Camel
case Concept

Synonyms United States v USA v America 
v Uncle Sam v Great Satan

Concept

Acronyms United States v USA v US Concept

Homonyms

Such as when the same name 
refers to more than one con-
cept, such as Name referring to
a person v Name referring to a 
book

Concept

Misspellings As stated Concept
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Class Category Subcategory Examples Type 12

Generalization / Specialization

When single items in one 
schema are related to multiple 
items in another schema or 
vice versa. For example, one 
schema may refer to ‘phone,’ 
but the other schema has mul-
tiple elements such as ‘home 
phone,’ ‘work phone’ and ‘cell 
phone’

Concept

Aggregation

Intra-aggregation

When the same population is 
divided differently (such as 
Census v Federal regions for 
states, England v Great Britain 
v United Kingdom, or full per-
son names v first-middle-last)

Concept

Inter-aggregation May occur when we include 
sums or counts as set members Concept

CONCEPTUAL Internal Path Discrepancy

Can arise from different 
source-target retrieval paths in
two different schemas (for ex-
ample, hierarchical structures 
where the elements are differ-
ent levels of remove)

Concept

Missing Item

Content Discrepancy

Differences in set enumera-
tions or including items or not 
(say, US territories) in a listing 
of US states

Concept

Missing Content
Differences in scope coverage 
between two or more datasets 
for the same concept

Concept

Attribute List Discrep-
ancy

Differences in attribute com-
pleteness between two or more
datasets

Attribute

Missing Attribute
Differences in scope coverage 
between two or more datasets 
for the same attribute

Attribute

Item Equivalence

When we assert two types 
(classes or sets) as being the 
same when the scope and ref-
erence are not (for example, 
Berlin the city v Berlin the of-
ficial city-state)

Concept

When we assert two individu-
als as being the same when 
they are distinct (for example, 
John Kennedy the president v 
John Kennedy the aircraft car-
rier)

Attribute

Type Mismatch When we characterize the Attribute
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Class Category Subcategory Examples Type 12

same item by different types, 
such as a person typed as an 
animal v human being v person

Constraint Mismatch

When attributes referring to 
the same thing have different 
cardinalities or disjointedness 
assertions

Attribute

DOMAIN

DOMAIN

Schematic
Discrepancy

Element-value to Ele-
ment-label Mapping

One of four errors that may oc-
cur when attribute names or 
values may not be completely 
unambiguous.

Attribute

Attribute-value to Ele-
ment-label Mapping

Attribute

Element-value to At-
tribute-label Mapping Attribute

Attribute-value to At-
tribute-label Mapping

Attribute

Scale or Units

Measurement Type
Differences, say, in the metric 
v English measurement sys-
tems, or currencies

Attribute

Units Differences, say, in meters v 
centimeters v millimeters Attribute

Precision
For example, a value of 4.1 
inches in one dataset v 4.106 in
another dataset

Attribute

Data 
Representation

Primitive Data Type
Confusion often arises in the 
use of literals v URIs v object 
types

Attribute

Data Format

Delimiting decimals by period 
v commas; various date for-
mats; using exponents or ag-
gregate units (such as thou-
sands or millions)

Attribute

DATA Naming

Case Sensitivity Uppercase v lower case v Camel
case

Attribute

Synonyms For example, centimeters v cm Attribute

Acronyms For example, currency symbols
v currency names Attribute

Homonyms

Such as when the same name 
refers to more than one at-
tribute, such as Name referring
to a person v Name referring to
a book

Attribute

Misspellings As stated Attribute

ID Mismatch or Missing ID URIs can be a particular prob-
lem here, due to actual mis-
matches but also use of names-

Attribute
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Class Category Subcategory Examples Type 12

paces or not and truncated 
URIs

Missing Data

A common problem, more con-
cerning with closed world ap-
proaches than with open world
ones

Attribute

Element Ordering

Set members can be ordered or
unordered, and if ordered, the 
sequences of individual mem-
bers or values can differ

Attribute

Table 5-1: Sources of Semantic Heterogeneities

We have assigned these structural aspects to one of two types: a) those that may
arise from the  conceptual differences between sources (mostly from schema differ-
ences); and b) those due to value and  attribute discrepancies (data). The table also
provides examples of what each of these categories of heterogeneities means.

This listing is a  reasonably comprehensive view of what is  involved in getting
things to talk together (semantic agreement). Fortunately, via the adoption of standard
syntactic protocols and semantic languages, means for managing many of these pos-
sible heterogeneities are handled in the background when complying with their rules
(axioms) or language constructs. That still leaves us with the heterogeneities associ-
ated with human communications and how to measure the attributes of things. 

From the conceptual to actual data, then, we see differences in perspective, vo-
cabularies,  measures,  and  conventions.  Some  of  these  differences  and  hetero-
geneities  are  intrinsic  to  the  nature  of  the  data  at  hand.  Some of  these hetero-
geneities also arise from the basis and connections asserted between datasets. Only
by systematically understanding these sources of heterogeneity — and then explic-
itly addressing them — can we begin to try to put disparate information on a com-
mon footing. Only by reconciling differences can we start to get data to interoperate. 

Role of Semantic Technologies

The first advantage of semantic technologies is that all kinds of information are
unified. No matter what information you consider, any content type may become a
‘first-class citizen.’ For really the first time, we can put all kinds of information rang-
ing from traditional databases and spreadsheets (structured) to markup, Web pages,
XML and data messages (semi-structured), and then on to documents and text (un-
structured) or multimedia (via metadata) on a level playing field. These data, now all
treated on an equal footing, can be searched and retrieved by a variety of techniques.
These range from SQL, standard text search, or SPARQL, depending on content type.
This unique combination enables us to fulfill all of the aspects of findability — find,
discover, navigate. Because of the diversity of search options available, we can vary
and optimize search results depending on circumstance and needs. Because all con-
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tent is represented either as a type of thing, an individual thing, or the relationships
between those things, we may use these classifiers for faceting or grouping. Further,
the  connections put all things in context, useful to ensure results are relevant and
disambiguated.

What  works  efficiently  for  transactions  and  accounting  is  a  poor  choice  for
knowledge  problems.  Traditional  relational  databases  work  best  with  structured
data; are inflexible and fragile when the nature (schema) of the world changes; and
thus require constant (and expensive) re-architecting in the face of new knowledge
or new relationships. Conversely, for semantic technologies, we describe things and
their relationships based on the ‘idea of the thing,’ not limited to keywords. Thus, we
can describe and find things using alternative terms, synonyms, acronyms or jargon.
We can add on or extend semantic vocabularies without altering what we have al -
ready asserted, assuming the prior assertions still hold true. 

We should use semantic technologies instead of conventional information tech-
nologies in the areas of knowledge representation (KR) and knowledge management
(KM). Semantic technologies are orthogonal to some other current technologies, in-
cluding cloud computing and big data. Semantic technologies are not limited to open
data: they are equivalently useful to private or proprietary data. Semantic technolo-
gies do not imply some grand, shared schema for organizing all information, though,
at some levels, that is extremely useful. Semantic technologies are not ‘one ring to
rule them all,’ but rather a way to capture the worldviews of particular domains and
groups of stakeholders. Semantic technologies appropriately done are not a replace-
ment for existing information technologies, but rather an added layer that can lever-
age those assets for interoperability and to overcome the semantic barriers between
existing information silos. These very same semantic technologies also provide the
proper representational basis for symbol-based machine learning and intelligence.

Semantic technologies give us the basis for understanding differences in meaning
across  sources,  specifically geared to address  differences in real-world  usage and
context. These semantic tools are essential for providing common bases for relating
structured data across various sources and contexts. These same semantic tools are
also the basis by which we can determine what unstructured content ‘means,’ thus
providing the structured data tags that also enable us to relate documents to conven-
tional data sources using semi-structured data. Semantic technologies are therefore
the enablers for making information understandable to both humans and machines
across sources. 

Semantic  technologies  expressly  address  these  heterogeneities,  some  more
strongly in some areas than others. However, to capture the scope of the hetero-
geneities listed, we need the technologies to mimic aspects of human language, sym-
bology, and logic. We express ourselves via the equation and the document, not to
mention jumping up and down and gesticulating. By accounting explicitly for the re-
lationships between things, we can use semantic technologies to better capture con-
text, essential for navigation and the reduction of ambiguity. We can use the richness
of relationships to group, classify, filter, or find things. The basic assertion in our se-
mantic languages declares relationships between and for things. These statements,
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when combined with the objects of some  statements being the subjects of others,
leads to a graph structure (see Chapter 1). We may apply various logics based on the
nature of our declarations to compute over the structure and understand or infer re-
lationships  between  things.  We can  use  the  graph  structures  for  novel traversal
mechanisms and network analysis.  No other information structure provides these
unique advantages.

Semantics and Graph Structures

The graph structures of semantic schema mean that any node can become an en-
try point to the knowledge space for discovery. The traversal of information rela-
tionships occurs from the selection of predicates or properties that we use to create
this graph structure in the first place. This richness of characterization and objects
also means we can query or traverse this space in multiple languages or via the full
spectrum by which we describe or characterize things. Semantic-based knowledge
graphs are potentially an explosion of richness in characterization and how those
characterizations get made and referred to by any stakeholder.10 We enable the user
community to determine our search structures, rather than some group of designers
or information architects. It should not be surprising that search offers one of the
quickest and most visible paths to gain the benefits of semantic technologies.

Existing IT assets represent massive sunk costs, legacy knowledge and expertise,
and (often) stakeholder consensus. These systems are still mostly stovepiped. Strate-
gies that counsel replacing existing IT systems risk wasting existing assets. We are
better served to leverage the value already embodied in these systems while promot-
ing interoperability  and integration.  The beauty of semantic  technologies  —  ade-
quately designed and deployed in a Web-oriented architecture — is that a thin inter-
operability layer may be placed over existing IT assets to achieve these aims. We can
use  the  knowledge  graph  structure  to  provide  the  semantic  mappings  between
schema, while we use a Web service framework to convert sources to the canonical
data model. Via these approaches, we may preserve prior investments in knowledge,
information, and IT assets while enabling interoperability. The existing systems can
continue to provide the functionality as  initially deployed. Meanwhile, we may ex-
pose and integrate the KR-related aspects with other knowledge assets on the physi-
cal network. Being able to manage semantic heterogeneity is the kickstarter to this
process. 

CARVING NATURE AT THE JOINTS

The embracing of semantics and the languages to express them is but the prereq-
uisite. Once we decide the rules of the game, we need to populate our domain. That
means we need to capture the concepts, instances, attributes, and relations of our
domain. This capturing forms our vocabulary, and how we group, classify and type
that vocabulary should reflect the reality of our domain and how we organize it.
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Stated in the abstract this sounds like a tall order. However, we help fulfill this order
if we seek to organize our domain in the most realistic way possible, what  Plato,
speaking as Socrates in the dialog with   Phaedrus  , says:11

SOCRATES

It seems to me that the discourse was, as a whole, really sportive jest; but in these
chance utterances were involved two principles, the essence of which it would be grat-
ifying to learn, if art could teach it.

PHAEDRUS

What principles?

SOCRATES

That of perceiving and bringing together in one idea the scattered particulars, that
one may make clear by definition the particular thing which he wishes to explain; just
as now, in speaking of Love, we said what he is and defined it, whether well or ill. Cer-
tainly by this means the discourse acquired clearness and consistency.

PHAEDRUS

And what is the other principle, Socrates? 

SOCRATES

That of dividing things again by classes, where the natural joints are, and not trying
to break any part, after the manner of a bad carver. As our two discourses just now
assumed one common principle, unreason, and then, just as the body, which is one, is
naturally divisible into two, right and left, with parts called by the same names, so
our two discourses conceived of madness as naturally one principle within us, and one
discourse, cutting off the left-hand part, continued to divide this until it found among
its parts a sort of left-handed love,  which it very justly reviled, but the other dis-
course, leading us to the right-hand part of madness, found a love having the same
name as the first, but divine, which it held up to view and praised as the author of our
greatest blessings.

PHAEDRUS

Very true.

SOCRATES

Now I myself,  Phaedrus, am a lover of these processes of division and bringing to-
gether, as aids to speech and thought; and if I think any other man is able to see
things that can naturally be collected into one and divided into many, him I follow af-
ter and «walk in his footsteps as if he were a god.»

The idea of ‘carving nature at the joints’ is a mindset we can apply to all of the major
divisions in our vocabulary; namely, things, concepts, relations, and attributes.
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Forming ‘Natural’ Classes

As we see, going back at least to Plato and Aristotle, how to properly define and
bound categories and concepts have been a topic of much philosophical discussion. If
we do not scope the organization of our knowledge and define it consistently, then it
is virtually impossible to construct a logical and coherent way to reason over this
structure. Aristotle set the foundational basis for understanding what we now call
natural kinds and categories (or ‘classes’). The universal desire to understand and de-
scribe our world has meant that philosophers have argued these splits  and their
bases  ever  since.  We  can  place  these  philosophical  arguments  into  three  broad
camps. First,  we have realists, who believe things have independent order and exis-
tence in the natural world, apart from thought. Second, we have nominalists, who be-
lieve that humans provide the basis for how things are organized in part by how we
name them. Third, we have idealists, or anti-realists, who believe ‘natural’ classes are
generalized ones that conform to human ideals of how the world is organized but are
not independently real.12 These categories shade into one another, such that these
beliefs become strains in various degrees for how any one philosophy might be de-
fined. 

The realist strain, also closely tied to the sciences and the scientific method, is
what most guides the logical basis of semantic technologies and our view of how to
organize the world.  Science and technology are producing knowledge in unprece-
dented amounts, and realism is the best approach for testing the trueness of new as-
sertions. We think realism is the most efficacious approach to knowledge representa-
tion designs. Being explicit about the philosophy in how we construct our knowledge
representations helps decide sometimes sticky design questions, as we will see multi-
ple times throughout this book.

Aristotle believed that the world fits into categories, that categories were hierar-
chical in nature, and what defined a particular class or category was its  essence or
the attributes that uniquely define what a given thing is. A mammal has the essences
of being hairy, warm-blooded, and live births. These essences distinguish mammals
from other types of animals such as birds or reptiles or fishes or insects. Essential
properties are different from accidental or artificial distinctions, such as whether a
man has a beard or not or whether he is gray- or red-haired or of a certain age or
country. We base a natural classification system on real differences of character and
not artificial or single ones. Hierarchies arise from the shared generalizations of such
essences amongst categories or classes. Under the Aristotelian approach, classifica-
tion is the testing and logical clustering of such essences into more general or more
specific categories of shared attributes. Because these essences are inherent to na-
ture, natural clusterings are an expression of real relationships in the real world, of-
ten hierarchical in structure.

By the age of the Enlightenment, some began to question these long-held philoso-
phies. Descartes famously grounded the perception of the world into innate ideas in
the human mind.  Descartes’  philosophy, built  upon that of  William of Ockham of
Occam’s razor fame,  maintained individuals populate the world;  no such things as
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universals exist. In various guises, thinkers from Locke to Hume questioned a solely
realistic organization of concepts in the world.13 While there may be ‘natural kinds,’
categorization is also an expression of the innate drive by humans to name and orga-
nize their world, was the dominant view of these emerging nominalists. 

Charles S. Peirce started a mighty swing back to realism. He was the first, by my
reading, who looked at the question of ‘natural classes’ sufficient to provide design
guidance, and which may sometimes be contraposed against what some call ‘artificial
classes’ (we also tend to use the term ‘compound’ classes). Natural classes were a key
underpinning to Peirce’s own efforts to provide a uniform classification system re-
lated to inquiry and the sciences. A natural class is a set  of members that share the
same set of attributes, though with different values (such as differences in age or
hair color for humans, for example). Some of those attributes are also more essential
to define the type of that class (such as humans being warm-blooded with live births
and hair and use of symbolic languages). Artificial classes tend only to add one or a
few shared attributes and do not reflect the essence of the type.18 Our use and notion
of ‘natural classes’ hews closely to how Peirce understood the concept:

“So then, a natural class being a family whose members are the sole offspring and ve-
hicles of one idea, from which they derive their peculiar faculty, to classify by abstract
definitions is simply a sure means of avoiding a natural classification. I am not decry-
ing definitions. I have a lively sense of their great value in science. I only say that it
should not be by means of definitions that one should seek to find natural classes.
When the classes have been found, then it is proper to try to define them; and one
may even, with great caution and reserve, allow the definitions to lead us to turn back
and see whether our classes ought not to have their boundaries differently drawn. Af-
ter all, boundary lines in some cases can only be artificial, although the classes are
natural ....” (EP 2:125)

Peirce’s ideas of a natural kind appear closely tied to his realism:

“Any class which, in addition to its defining character, has another that is of perma-
nent interest and is common and peculiar to its members, is destined to be conserved
in that ultimate conception of the universe at which we aim, and is accordingly to be
called ‘real.’” (1901, CP 6.384)

Another guideline that Peirce provides is that intension is also a means for determin-
ing a natural classification:

“The descriptive definition of a natural class, according to what I have been saying, is
not the essence of it. It is only an enumeration of tests by which the class may be rec-
ognized in any one of its members. A description of a natural class must be founded
upon samples of it or typical examples.” (1902, CP 1.223)

Peirce greatly  admired the natural  classification systems of  Louis  Agassiz and
used animal lineages in many of his examples. He was a strong proponent of natural
classification. Though we have replaced the morphological basis for classifying or-
ganisms in  Peirce’s  day with  genetic  ones,  Peirce  would  surely  support  this  new
knowledge, since he grounded his philosophy on a triad of primitive unary, binary
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and tertiary relations, bound together in a logical sign process seeking truth. 
For example, natural class instances, which are by definition intensional due to

the  differentia that  comprises their class, may be declared by assignment to a class
type. Once we define a type such as a hairless mammal that walks in a bipedal man -
ner as a  human,  we can  after that assign individual people to that class type and
thereby infer human properties (or characteristics). We need not specify all possible
human properties per individual under a strictly intensional approach nor enumer-
ate all human individuals under a strictly extensional approach. We can let the use of
type assignments bridge this divide. We can also see that, depending on context, we
may want to speak about human as a class (type) subsuming individual people or to
speak about human as an instance with particular kinds of properties (attributes). I
discuss further this ‘punning’ metamodeling technique in Chapter 9. 

Peirce’s concept of ‘natural kinds’ or ‘natural classes’ is not limited to things only
found in nature. Peirce's semiotics (theory of signs) also recognizes ‘natural’ distinc-
tions in areas such as social classes, the sciences, and human-made products.14 These
distinctions are important because they affirm essences and realities in the external
world. A ‘natural’ classification is not limited to the animate. ‘Natural’ classification
is premised on reason and subject to testing. Again, the key discriminators are the
essences of things that distinguish them from other things, and the degree of sharing
of attributes contains the basis for understanding relationships and hierarchies.

Menno Hulswit is one of the scholars who has studied Peirce’s concept of ‘natural
classes’ most closely.18 As he has observed:

“From the natural sciences, Peirce had learned that the forms of chemical substances
and biological species are the expression of a particular internal structure. He recog-
nized that it was precisely this internal structure that was the final cause by virtue of
which the members of the natural class exist.” (p. 759)

“... Peirce’s view may be summarized as follows: Things belong to the same natural
class on account of a metaphysical  essence and a number of class  characters. The
metaphysical essence is a general principle by virtue of which the members of the
class have a tendency to behave in a specific way; this is what Peirce meant by final
cause. This finality may be expressed in some sort of microstructure. The class charac-
ters which by themselves are neither necessary nor sufficient conditions for member-
ship of a class, are nevertheless concomitant. In the case of a chair, the metaphysical
essence is the purpose for which chairs are made, while its having chair-legs is a class
character. The fuzziness of boundary lines between natural classes is due to the fuzzi-
ness of the class characters. Natural classes, though very real, are not existing entities;
their reality is of the nature of possibility, not of actuality. The primary instances of
natural classes are the objects of scientific taxonomy, such as elementary particles in
physics, gold in chemistry, and species in biology, but also artificial objects and social
classes.

“By denying that  final causes are static,  unchangeable entities,  Peirce avoided the
problems attached to classical essentialism. On the other hand, by eliminating arbi-
trariness, Peirce also avoided pluralistic anarchism. Though Peircean natural classes
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only come into being as a result of the abstractive and selective activities of the peo-
ple who classify, they reflect objectively real general principles. Thus, there is not the
slightest sense in which they are arbitrary: ‘there are artificial classifications in profu-
sion, but [there is] only one natural classification.’ (1902, CP 1.275)” (pp. 765-6)

Though all of this sounds somewhat abstract and philosophical, these distinctions
are  not  merely  metaphysical.  The  ability  to  organize  our  representations  of  the
world into natural classes also carries with it the ability to organize that world, rea-
son over it, draw inferences from it, and truth test it. Indeed, as we may discover
through knowledge acquisition or the scientific method, this world representation is
itself mutable. Our understanding of species relationships, for example, has changed
markedly, especially most recently, as the basis for our classifications shifts from
morphology to DNA. Einstein’s challenges to Newtonian physics similarly changed
the ‘natural’ way by which we need to organize our understanding of the physical
world. 

A Mindset for Categorization

These points are not academic. The central weakness, for example, that I have
noted for Wikipedia over many years has been its category structure. Category in-
consistencies are the root source of the problem that Wikipedia can not presently act
as a computable knowledge graph.1 Categories  often do not conform to a natural
classification scheme, and many categories are ‘artificial’ in that they are compound
or distinguished by a single attribute. ‘Compound’ (or artificial) categories (such as
Films directed by Pedro Almodóvar or  Ambassadors of the United States
to Mexico) are not ‘natural’ categories, and including them in a logical evaluation
only acts to confuse attributes from classification. To be sure, we should decompose
such existing categories into their attribute and concept components, and possibly
only include the decomposed versions (if then) when constructing a schema of the
domain. ‘Artificial’ categories may be identified in the Wikipedia category structure
by both syntactical and heuristic signals. One syntactical rule is to look for the head
of a title; one heuristic signal is to select out any category with prepositions. Across
all  rules,  ‘compound’ categories account for most of what we remove to produce
‘cleaned’ categories. Including administrative and other problem categories, perhaps
half to two-thirds of Wikipedia’s categories do not meet the definition of natural cat-
egories, though Wikipedia’s editors continue to make improvements.15 Independent
actors have staged and processed Wikipedia multiple times to overcome these limits
to create usable knowledge bases.

Whatever  the  target  for  the  categorization effort  may  be,  Peirce  put  forward
some general execution steps:

“... introduce the monadic idea of »first« at the very outset. To get at the idea of a
monad, and especially to make it an accurate and clear conception, it is necessary to

1 Some reviewers have suggested the issue is a matter of scale. While I agree large scale causes its own chal-
lenges, I believe the problem is one more of coherence and lack of consistency.

101

http://en.wikipedia.org/wiki/Category:Ambassadors_of_the_United_States_to_Mexico
http://en.wikipedia.org/wiki/Category:Ambassadors_of_the_United_States_to_Mexico
http://en.wikipedia.org/wiki/Category:Films_directed_by_Pedro_Almod%C3%B3var


A KNOWLEDGE REPRESENTATION PRACTIONARY

begin with the idea of a triad and find the monad-idea involved in it. But this is only a
scaffolding necessary during the process of constructing the conception. When the
conception has been constructed, the scaffolding may be removed, and the monad-
idea will be there in all its abstract perfection. According to the path here pursued
from monad to triad, from monadic triads to triadic triads, etc., we do not progress by
logical involution — we do not say the monad involves a dyad — but we pursue a path
of evolution. That is to say, we say that to carry out and perfect the monad, we need
next a dyad. This seems to be a vague method when stated in general terms; but in
each case, it turns out that deep study of each conception in all its features brings a
clear perception that precisely a given next conception is called for.” (1896, CP 1.490)

This quote is at the root of Peirce’s views concerning the universal categories, the
main topic of the next chapter. Triads figure prominently in this thinking. As we
weave the various threads in Peirce’s philosophy together, we also come to see the
logic of how the three components of inquiry work in a similar manner to categoriza-
tion, itself just a more structured view of what Peirce discussed as a generalization.
What we learn from Peirce in this investigation is that categorization, thankfully, is a
knowledge representation task, that  we can approach logically and systematically.
We can adopt a categorical mindset about how to think of the world. The assign-
ments should be defensible, but we should also be ready to change them when faced
with better evidence or logic. We learn more about how to think through categoriza-
tion in Chapter 6.

Connections Create Graphs

When representing knowledge, more things and concepts get drawn into consid-
eration. In turn, the relationships of these things lead to connections between them
to capture the inherent interdependence and linkages of the world. As still  more
things get considered, we make and proliferate more connections. This process natu-
rally leads to a graph structure, with the things in the graphs represented as nodes
and the relationships between them represented as connecting edges.1 More things
and more connections lead to more structure. Insofar as this structure and its con-
nections are coherent, the natural structure of the knowledge graph itself can help
lead to more knowledge and understanding.

Coherent and logical graphs first require natural groupings or classes of concepts
and entity types by which to characterize the domain at hand, situated to one an-
other with testable relations. We characterize entity types with a similar graph of de-
scriptive attributes. Concepts and entity types thus represent the nodes in the graph,
with relations being the connecting infrastructure. Relatedness of shared attributes
or types of relations can also create ontological structures that enable inference and
a host of graph analytics techniques for understanding meaning and connections.
For such a structure to be coherent, the nodes (classes) of the structure should also
be as natural as possible, applying the same categorization approaches.

Unlike traditional data tables, graphs have  some inherent benefits, particularly

1 See Figure 1-3.
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for knowledge representations. They provide:

 A coherent way to navigate the knowledge space; 

 Flexible entry points for each user to access that knowledge (since every node
or relation is a potential starting point); 

 Inferencing and reasoning structures about the space;

 Connections to related information; 

 Ability to connect to any form of information; 

 Concept mapping, and thus the ability to integrate external content; 

 A framework to disambiguate concepts based on relations and context; and 

 A common vocabulary to drive content ‘tagging.’

Graphs are the natural structures for knowledge domains if they follow a ‘natural’
classification and we test them for coherence. Once built, graphs offer some analyti-
cal  capabilities  not  available  through traditional  means  of  information structure.
Graph analysis is a rapidly emerging field, but we are already able to gauge some
unique measures of knowledge domains, such as influence, relatedness, proximity,
centrality, inference, clustering, shortest paths, and diffusion. As science is coming
to appreciate, graphs can represent any extant structure or schema.  The universal
character of graphs makes them an attractive target for many analytic tools.

The essence of knowledge is that it is ever-growing and expandable. New insights
bring new relations and new truths. The structures we use to represent this knowl-
edge must themselves adapt and reflect the best of our current, testable understand-
ings.  Keeping  in  mind  the  need  for  ‘natural’  classes  —  that  is,  consistent  with
testable, knowable truth — is a building block in how we should organize our knowl-
edge  graphs.  Through such guideposts  as  coherence,  inference,  and truthfulness,
these  structural  arrangements  become  testable  propositions.  As  Peirce,  I  think,
would admonish us, failure to meet these tests is grounds for re-jiggering our struc-
tures and classes. In the end, coherence and computability become the hurdles that
our knowledge graphs must clear to become reliable structures. 
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