
Available Article

Author’s final: This draft is prior to submission for publication, and the
subsequent edits in the published version. If quoting or citing, please refer to the
proper citation of the published version below to check accuracy and pagination.

Cite as: Bergman, M. K. Appendix C: KBpedia Feature Possibilities. in A Knowledge
Representation Practionary: Guidelines Based on Charles Sanders Peirce (ed.
Bergman, M. K.) 421-434 (Springer International Publishing, 2018).
doi:10.1007/978-3-319-98092-8_20

Official site: https://link.springer.com/book/10.1007/978-3-319-98092-8

Full-text: http://www.mkbergman.com/publications/akrp/appendix-c.pdf

Abstract: The two most labor-intensive steps in machine learning for natural
language are 1) feature engineering, and 2) labeling of training sets. A systematic
view of machine learning relating knowledge and human language features —
coupled with large-scale knowledge bases such as Wikipedia and Wikidata — can
lead to faster and cheaper learners across a comprehensive range of NLP tasks.
Machine learners can only predict output based on numeric features, to which we
must convert text or other representation, though they can be subject to rules and
weights depending on the type of learner. For natural language, a feature may be a
surface form, like terms or syntax or structure (such as hierarchy or connections); it
may be derived (such as statistical, frequency, weighted or based on the ML model
used); it may be semantic (in terms of meanings or relations); or it may be latent, as
either something hidden or abstracted from feature layers below it. I provide an
organized inventory of more than 200 feature types applicable to natural
language. They include lexical, syntactical, structural and other items that reflect
how we express the content in the surface forms of various human languages.

https://link.springer.com/book/10.1007/978-3-319-98092-8
http://www.mkbergman.com/publications/akrp/appendix-c.pdf

APPENDIX C:

KBPEDIA FEATURE POSSIBILITIES

he two most labor-intensive steps in machine learning for natural language
are: 1) feature engineering, and 2) labeling of training sets. Supervised

machine learning uses an input-output pair, mapping an input, which is a feature, to
an output, which is the label. The machine learning consists of inferring (‘learning’) a
function that maps between these inputs and outputs with adequate predictive
power. We can apply this learned function to previously unseen inputs to predict the
output label. The technique is particularly suited to problems of regression or of
classification. Yet, despite the integral role of features in the machine learning
process, we often overlook their importance compared to labels and algorithms.

T

Before we can understand how best to leverage features in our knowledge-based ar-
tificial intelligence (KBAI) efforts, we need first to define and name the feature space.
Separately, we also need to study what exists on how to select, construct, extract or
engineer these features. Armed with this background, we can now assemble an in-
ventory of what features might contribute to natural language or knowledge base
learning.

We have followed these steps to produce a listing of possible KBpedia features.1

We have organized that inventory a bit to point out the structural and conceptual re-
lationships among these features, which enables us to provide a lightweight taxon-
omy for the space. Since others have not named or exposed many of these features
before, we conclude this appendix with some discussion about what next-generation
learners may gain by working against this structure. Of course, since much of this
thinking is incipient, forks and dead ends may unfold, but there also will likely be
unforeseen expansions and opportunities as well. A systematic view of machine
learning and its knowledge and human language features — coupled with large-scale
knowledge bases such as Wikipedia and Wikidata — can lead to faster and cheaper
learners across a comprehensive range of NLP tasks.

401

https://en.wikipedia.org/wiki/Feature_engineering
https://en.wikipedia.org/wiki/Feature_extraction
https://en.wikipedia.org/wiki/Feature_vector
https://en.wikipedia.org/wiki/Feature_selection
https://en.wikipedia.org/wiki/Feature_(machine_learning)
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Unsupervised_learning

A KNOWLEDGE REPRESENTATION PRACTIONARY

What is a Feature?

A “feature is an individual measurable property of a phenomenon being ob-
served.”2 It is an input to a machine learner, an explanatory variable, sometimes in
the form of a function. Some equate features with attributes, but this is not strictly
accurate, since a feature may be a combination of other features, or a statistical cal-
culation, or an abstraction of other inputs (some would say it could be about any-
thing!). In any case, we must express a feature as a numeric value (including Boolean
as 0 and 1) upon which the machine learner can calculate its predictions. Machine
learner predictions of the output can only be based on these numeric features,
though they can be subject to rules and weights depending on the type of learner.

Pedro Domingos emphasizes the importance of features and the fact they may be
extracted or constructed from other inputs:3

“At the end of the day, some machine learning projects succeed and some fail. What
makes the difference? Easily the most important factor is the features used.... Often,
the raw data is not in a form that is amenable to learning, but you can construct fea-
tures from it that are. This is typically where most of the effort in a machine learning
project goes. It is often also one of the most interesting parts, where intuition, creativ-
ity and ‘black art’ are as important as the technical stuff.”

Many experienced ML researchers make a similar reference to the art or black art of
features. In broad strokes in the context of natural language, a feature may be: a sur-
face form, like terms or syntax or structure (such as hierarchy or connections); de-
rived (such as statistical, frequency, weighted or based on the ML model used); se-
mantic (in terms of meanings or relations); or latent, either as something hidden or
abstracted from feature layers below it. Unsupervised learning or deep learning fea-
tures arise from the latent form.

For a given NLP problem domain, features can number into the millions or more.
Concept classification, for example, could use features corresponding to all of the
unique words or phrases in that domain. Relations between concepts could also be as
numerous. We calculate some form of vector relationship over, say, all of the terms
in the space so that we may assign a numerical value to ‘high-dimensional’ features.4

Because learners may learn about multiple feature types, the potential combinations
for the ML learner can be astronomical. This combinatorial problem has been known
for decades and has been termed the curse of dimensionality for more than 50 years.5

Of course, just because a feature exists says nothing about whether it is useful for
ML predictions. Features may thus be one of four kinds: 1) strongly relevant, 2)
weakly relevant, 3) irrelevant, or 4) redundant.6 We should favor strongly relevant
features; we may sometimes combine weakly relevant to improve the overall rele-
vancy. We should remove all irrelevant or redundant features from consideration.
Often, the fewer the features, the better, so long as the features used are strongly rel-
evant and orthogonal (that is, they capture different aspects of the prediction space)
to one another.

402

https://en.wikipedia.org/wiki/Curse_of_dimensionality
https://en.wikipedia.org/wiki/Deep_learning
https://en.wikipedia.org/wiki/Unsupervised_learning
https://en.wikipedia.org/wiki/Dependent_and_independent_variables#Statistics_synonyms

KBPEDIA FEATURE POSSIBILITIES

A (Partial) Inventory of Natural Language and KB Features

To make this discussion tangible, we have assembled a taxonomy of feature types
in the context of natural language and knowledge bases. I drew this inventory from
the limited literature on feature engineering and selection in the context of KBAI
from the perspectives of ML learning in general,7 8 9 ML learning ontologies10 11 and
knowledge bases.12 13 14 15 16 This listing is only partial, but does provide an inventory
of more than 200 feature types applicable to natural language.

We have organized this inventory into eight (8) main areas in Table C-1, shown in
italics, which tend to cluster into these four groupings:

 Surface features — these are features that one can see within the source docu-
ments and knowledge bases. They include: Lexical items for the terms and
phrases in the domain corpus and knowledge base; Syntactical items that show
the word order or syntax of the domain; Structural items that either split the
documents and corpus into parts or reflect connections and organizations of the
items, such as hierarchies and graphs; or Natural Language items that reflect how
we express the content in the surface forms of various human languages;

 Derived features — are surface features that we transform or derive in some
manner, such as the direct Statistical items or the Model-based ones reflecting the
characteristics of the machine learners used;

 Semantic features — these are summarized in the Semantics area, and reflect
what the various items mean or how they are conceptually related to one an-
other; and

 Latent features — these features are not observable from the source content. In-
stead, these are statistically derived abstractions of the features above that are
one- to N-levels removed from the initial source features. These Latent items
may either be individual features or entire layers of abstraction removed from
the surface layer. These features result from applying unsupervised or deep
learning machine learners.

We may nucleate features and training sets based on the syntax, morphology,
semantics (meaning of the data) or relationships (connections) of the source data in
the knowledge base. Continuous testing and the application of machine learning to
the system itself creates virtuous feedback where the accuracy of the overall system
is constantly and incrementally improved.

The compiled taxonomy listing of features in Table C-1 exceeds any prior listings.
In fact, most of the feature types we show have yet to participate in NLP machine
learning tasks. We organize our taxonomy according to the same eight main areas,
shown under the shaded entries, noted above:

Lexical
Corpus
Phrases

Averages

403

https://en.wikipedia.org/wiki/Semantics
https://en.wikipedia.org/wiki/Morphology_(linguistics)
https://en.wikipedia.org/wiki/Syntax

A KNOWLEDGE REPRESENTATION PRACTIONARY

Counts
N-grams
Weights

Words
Averages
Counts
Cut-offs (top N)
Dictionaries
Named entities
Stemming
Stoplists
Terms
Weights

Syntactical
Anaphora
Cases
Complements (argument)
Co-references
Decorations
Dependency grammar

Head (linguistic)
Distances
Gender
Moods
Paragraphs
Parts of speech (POS)
Patterns
Plurality
Phrases
Sentences
Tenses
Word order

Statistical
Articles

Vectors
Information-theoretic

Entropy
Mutual information

Meta-features
Correlations
Eigenvalues
Kurtosis
Sample measures

Accuracy
F-1

Precision
Relevance

Skewness
Vectors
Weights

Phrases
Document frequencies
Frequencies (corpus)

404

KBPEDIA FEATURE POSSIBILITIES

Ranks
Vectors

Words
Document frequencies
Frequencies (corpus)
Ranks
String similarity
Vectors

Cosine measures
Feature vectors

Structural
Documents

Node types
Depth
Leaf

Document parts
Abstract
Authors
Body
Captions
Dates
Headers
Images
Infoboxes
Links
Lists
Metadata
Templates
Title
Topics

Captions
Disambiguation pages
Discussion pages

Authors
Body
Dates
Links
Topics

Formats
Graphs (and ontologies)

Acyclic
Concepts

Centrality
Relatedness

Directed
Metrics (counts, averages, min/max)

Attributes
Axioms
Children
Classes
Depth
Individuals
Parents

405

A KNOWLEDGE REPRESENTATION PRACTIONARY

Sub-graphs
Headers

Content
Section hierarchy

Infoboxes
Attributes
Missing attributes
Missing values
Templates
Values

Language versions
Definitions
Entities
Labels
Links
Synsets

Links
Category
Incoming
Linked data
Outgoing
See also

Lists
Ordered
Unordered

Media
Audio
Images
Video

Metadata
Authorship
Dates
Descriptions
Formats
Provenance

Pagination
Patterns

Dependency patterns
Surface patterns

Regular expressions
Revisions

Authorship
Dates
Structure

Document parts
Captions
Headers
Infoboxes
Links
Lists
Metadata
Templates
Titles

406

KBPEDIA FEATURE POSSIBILITIES

Versions
Source forms

Advertisements
Blog posts
Documents

Research articles
Technical documents

Emails
Microblogs (tweets)
News
Technical
Web pages

Templates
Titles
Trees

Breadth measures
Counts
Depth measures

Web pages
Advertisements
Body
Footer
Header
Images
Lists
Menus
Metadata
Tables

Semantics [most also subject to Syntactical and Statistical features above)
Annotations

Alternative labels
Notes
Preferred labels

Associations
Association rules
Co-occurrences
See also

Attribute Types
Attributes

Cardinality
Descriptive
Qualifiers
Quantifiers

Many
Values

Datatypes
Many

Categories
Eponymous pages

Concepts
Definitions
Grouped concepts (topics)
Hypernyms

407

A KNOWLEDGE REPRESENTATION PRACTIONARY

Hypernym-based feature vectors
Hyponyms
Meanings
Synsets

Acronyms
Epithets
Jargon
Misspellings
Nicknames
Pseudonyms
Redirects
Synonyms

Entity Types
Entities
Events
Locations

General semantic feature vectors
Relation Types

Binary
Identity
Logical conjunctions

Conjunctive
Disjunctive

Mereology (part of)
Relations

Domain
Range

Similarity
Roles
Voice

Active/passive
Gender
Mood
Sentiment
Style
Viewpoint (Worldview)

Natural Languages
Morphology
Nouns
Syntax
Verbs
Word order

Latent
Autoencoders

Many; dependent on method
Features

Many; dependent on method
Hidden

Many; dependent on method
Kernels

Many; dependent on method
Model-based

Decision tree

408

http://deeplearning4j.org/deepautoencoder.html
https://en.wikipedia.org/wiki/Kernel_method

KBPEDIA FEATURE POSSIBILITIES

Tree measures
Dimensionality
Feature characteristics

Datatypes
Max
Mean
Min
Number
Outliers
Standard deviation

Functions
Factor graphs
Functors
Mappings

Landmarking
Learner accuracy

Method measures
Error rates

Table C-1: A (Partial) Taxonomy of Machine Learning Features

Fully 50% of the features listed in the inventory in Table C-1 above arise from
unique KB aspects, especially in the areas of Semantics and Structural, including graph
relationships. Many, if not most, of these new feature possibilities may prove redun-
dant or only somewhat relevant or perhaps not at all. Not all features may ever prove
useful. Some, such as Case, may be effectively employed for named entity or specialty
extractions, applicable to copyrights or unique IDs or data types, but may prove of
little use in other areas.

Still, because many of these KB features cover orthogonal aspects of the source
knowledge bases, the likelihood of finding new, strongly relevant features is high.
Further, except for the Latent and Model-based areas, each of these feature types may
be used singly or in combination to create coherent slices for both positive and nega-
tive training sets, helping to reduce the effort for labor-intensive labeling as well. By
extension, we can use these capabilities to more effectively bootstrap the creation of
gold standards, useful when we are testing parameters.

The Statistical and Meta-features sections of Table C-1 are first derivatives of the
base structure. The few listed here are examples of how we may include such mea -
sures in the feature pool, and they all are common ones. The point is that we may use
derivatives and embeddings from other features in the table as legitimate features in
their own right.

Though the literature most often points to classification as the primary use of
knowledge bases as background knowledge supporting machine learners, in fact,
many natural language processing (NLP) tasks may leverage KBs. Here is but a brief
listing of application areas for KBAI:

409

A KNOWLEDGE REPRESENTATION PRACTIONARY

• Entity recognizers
• Relation extractors
• Classifiers
• Q & A systems
• Knowledge base mappings

• Ontology development
• Entity dictionaries
• Data conversion and mapping
• Master data management
• Specialty extractors

Table C-2: NLP Applications for Machine Learners Using KBs

See also Table 4-1. Undoubtedly other applications will emerge as this more system-
atic KBAI approach to machine learning evolves over the coming years.

Feature Engineering for Practical Limits

This richness of feature types leads to the combinatorial problem of too many fea-
tures. Feature engineering is the way both to help find the features of strongest rele-
vance while reducing the feature space dimensionality to speed the ML learning
times. Initial feature engineering tasks should be to transform input data, regularize
them if need be, and to create numeric vectors for new ones. These are preparation
tasks to convert the source or target data to forms amenable to machine learning.
This staging now enables us to discover the most relevant (‘strong’) features for the
given ML method under investigation.

In a KB context, specific learning tasks as outlined in Table C-2 are often highly
patterned. The most effective features for training, say, an entity recognizer, will
only involve a limited number of strongly relevant feature types. Moreover, the rele-
vant feature types applicable to a given entity type should mostly apply to other en-
tity types, even though the specific weights and individual features (attributes and
other type relations) will differ. This patterned aspect means that once we train a
given ML learner for a given entity type, its relevant feature types should be approxi-
mately applicable to other related entity types. We can reduce the lengthy process of
initial feature selection as training proceeds for similar types. It appears we may dis-
cover combinations of feature types, specific ML learners, and methods to create
training sets and gold standards for entire classes of learning tasks.

Probably the most time-consuming and demanding aspect of these patterned ap-
proaches resides in feature selection and feature extraction. Feature selection is the
process of finding a subset of the available feature types that provide the highest
predictive value while not overfitting.17 Researchers typically split feature selection
into three main approaches:6 18 19

 Filter — select the N most promising features based on a ranking from some form
of proxy measure, like mutual information or the Pearson correlation
coefficient, which provides a measure of the information gain from using a
given feature type;

 Wrapper — test feature subsets through a greedy search heuristic that either
starts with an empty set and adds features (forward selection) keeping the
‘strongest’ ones, or starts with a full set and gradually removes the ‘weakest’

410

https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_correlation_coefficient
https://en.wikipedia.org/wiki/Overfitting

KBPEDIA FEATURE POSSIBILITIES

ones (backward selection); the wrapper approach may be computationally ex-
pensive; or

 Embedded — include feature selection as a part of model construction.

For high-dimensional features, such as terms and term vectors, we may apply sto-
plists or cut-offs (only considering the top N most frequent terms, for example) to re-
duce dimensionality. Part of the ‘art’ portion resides in knowing which feature candi-
dates may warrant formal selection or not; this learning can be codified and reused
for similar applications. One may also apply some unsupervised learning tests at this
point to discover additional ‘strong’ features.

Feature extraction transforms the data in the high-dimensional space to a space of
fewer dimensions. Functions create new features in the form of Latent variables,
which are not directly observable. Also, because these are statistically derived values,
many input features are reduced to the synthetic measure, which naturally causes a
reduction in dimensionality. Advantages of a reduction in dimensionality include:

1. Often a better feature set (resulting in better predictions);20

2. Faster computation and smaller storage;

3. Reduction in collinearity due to a reduction in weakly interacting inputs; and

4. Easier graphing and visualization.

On the other hand, the latent features are abstractions, and so not easily understood
as the literal. Deep learning generates multiple layers of these latent features as the
system learns.

Of course, we may also combine the predictions from multiple ML methods, which
then also raises the questions of ensemble scoring. We may also self-learn (that is,
meta- learn) more systematic approaches to ML such that the overall learning
process can proceed in a more automated way.

Considerations for a Feature Science

In supervised learning, it is clear that more time and attention have been given to
the labeling of the data, what the desired output of the model should be. Much less
time and attention has been devoted to features, the input side of the equation. The
purposeful use of knowledge bases and structuring them is one way we can make
progress. Still, progress also requires some answers to some fundamental questions.
A scientific approach to the feature space would likely need to consider, among other
objectives:

 Full understanding of surface, derived, and latent features;

 Relating various use cases and problems to specific machine learners and classes
of learners;

 Relating specific machine learners to the usefulness of particular features (see
also hyperparameter optimization and model selection);

411

https://en.wikipedia.org/wiki/Model_selection
https://en.wikipedia.org/wiki/Hyperparameter_optimization
http://www.scholarpedia.org/article/Metalearning
http://www.scholarpedia.org/article/Metalearning

A KNOWLEDGE REPRESENTATION PRACTIONARY

 Improved methods for feature engineering and construction;

 Improved methods for feature selection; and

 A better understanding of how to select supervised and unsupervised ML.

Some tools and utilities would also help to promote this progress. Some of these ca-
pabilities include:

 Feature inventories — how to create and document taxonomies of feature types;

 Feature generation — methods for the codification of leading recipes; and

 Feature transformations — the same for transformations, up to and including
vector creation.

Role of a Platform

The object of these efforts is to systematize how knowledge bases, combined with
machine learners, can speed the deployment and lower the cost of creating bespoke
artificial intelligence applications of natural language for specific domains. KBAI
places primary importance on features. An abundance of opportunity exists in this
area, and an abundance of work required, but little systematization.

The good news is we can build platforms that manage and grow the knowledge
bases and knowledge graphs supporting machine learning, as we discussed in Parts III
and IV. We can apply machine learners in a pipeline manner to these KBs, including
orchestrating the data flows in generating and testing features, running and testing
learners, creating positive and negative training sets, and establishing gold stan-
dards. The heart of the platform must be an appropriately structured knowledge
base organized according to a coherent knowledge graph; this is the primary purpose
of KBpedia.

Still, in the real world, engagements always demand unique scope and unique use
cases. We should engineer our platforms to enable ready access, extensions, configu-
rations, and learners. It is vital to structure our source knowledge bases such that
slices and modules can be specified, and all surface attributes may be selected and
queried. Mapping to the external schema is also essential. Background knowledge
from a coherent knowledge base is the most efficient way to fuel this.

Appendix Notes

1. Features apply to any form of machine learning, including for things like image, speech and pattern recog-
nition. However, this article is limited to the context of natural language, unstructured data and knowledge
bases.

2. Bishop, C., Pattern Recognition and Machine Learning, Berlin: Springer, 2006.

3. Domingos, P., “A Few Useful Things to Know About Machine Learning.,” Communications of the ACM, vol. 55,
2012, pp. 78–87.

412

KBPEDIA FEATURE POSSIBILITIES

4. For example, in the term or phrase space, the vectors might be constructed from counts, frequencies, cosine
relationships between representative documents, distance functions between terms, etc.

5. Bellman, R. E., Dynamic Programming, Rand Corporation, Princeton University Press, 1957.

6. Guyon, I., and Elisseeff, A., “An Introduction to Feature Extraction,” Feature extraction, 2006, pp. 1–25.

7. Haussler, D., Convolution Kernels on Discrete Structures, Technical report, Department of Computer Science,
University of California at Santa Cruz, 1999.

8. Reif, M., Shafait, F., Goldstein, M., Breuel, T., and Dengel, A., “Automatic Classifier Selection for Non-Ex-
perts,” Pattern Analysis and Applications, vol. 17, 2014, pp. 83–96.

9. Tang, J., Alelyani, S., and Liu, and H., “Feature Selection for Classification: A Review.,” Data Classification: Al-
gorithms and Applications, 2014, p. 37.

10. Hilario, M., Nguyen, P., Do, H., Woznica, A., and Kalousis, and A., “Ontology-based Meta-mining of Knowl-
edge Discovery Workflows,” Meta-Learning in Computational Intelligence, Heidelberg: Springer Berlin, 2011, pp.
273–315.

11. Panov, P., Soldatova, L., and Džeroski, S., “Ontology of Core Data Mining Entities,” Data Mining and Knowledge
Discovery, vol. 28, Sep. 2014, pp. 1222–1265.

12. Anastacio, I., Martins, B., and Calado, P., “Supervised Learning for Linking Named Entities to Knowledge
Base Entries,” Proceedings of the Text Analysis Conference (TAC2011), 2011.

13. Cheng, W., Kasneci, G., Graepel, T., Stern, D., and Herbrich, R., “Automated Feature Generation from Struc-
tured Knowledge,” Proceedings of the 20th ACM International Conference on Information and Knowledge Manage-
ment, ACM, 2011, pp. 1395–1404.

14. Huang, L., Milne, D., Frank, E., and Witten, I. H., “Learning a Concept Based Document Similarity Measure,” ‐Term Estimates of US Productivity and Growth,”
Journal of the Association for Information Science and Technology, vol. 63, 2012, pp. 1593–1608.

15. Medelyan, O., Milne, D., Legg, C., and Witten, I. H., “Mining Meaning from Wikipedia,” International Journal of
Human-Computer Studies, vol. 67, 2009, pp. 716–754.

16. Shen, H., Chen, M., Bunescu, R., and Mihalcea, R., “Wikipedia Taxonomic Relation Extraction using
Wikipedia Distant Supervision,” Ann Arbor, vol. 1001, p. 48109.

17. Overfitting is where a statistical model, such as a machine learner, describes random error or noise instead
of the underlying relationship. It is particularly a problem in high-dimensional spaces, a common outcome
of employing too many features.

18. John, G. H., Kohavi, R., and Pfleger, and K., “Irrelevant Features and the Subset Selection Problem,” Machine
Learning: Proceedings of the Eleventh International Conference, 1994, pp. 121–129.

19. Žabokrtský, Z., “Feature Engineering in Machine Learning,” 2015.

20. Hinton, G. E., “Deep Belief Networks,” Scholarpedia, vol. 4, 2009, p. 5947.

413

	Structure of the Book 2
	Overview of Contents 3
	Key Themes 9
	What is Information? 15
	What is Knowledge? 25
	What is Representation? 32
	Information and Economic Wealth 45
	Untapped Information Assets 53
	Impediments to Information Sharing 60
	KM and A Spectrum of Applications 66
	Data Interoperability 68
	Knowledge-based Artificial Intelligence 74
	Equal Class Data Citizens 86
	Addressing Semantic Heterogeneity 90
	Carving Nature at the Joints 96
	A Foundational Mindset 107
	Firstness, Secondness, Thirdness 111
	The Lens of the Universal Categories 116
	Things of the World 129
	Hierarchies in Knowledge Representation 132
	A Three-Relations Model 140
	Logical Considerations 149
	Pragmatic Model and Language Choices 159
	The KBpedia Vocabulary 162
	The Context of Openness 176
	Information Management Concepts 184
	Taming a Bestiary of Data Structs 191
	Types as Organizing Constructs 197
	A Flexible Typology Design 204
	KBpedia’s Typologies 207
	Graphs and Connectivity 216
	Upper, Domain and Administrative Ontologies 224
	KBpedia’s Knowledge Bases 229
	Uses and Work Splits 238
	Platform Considerations 248
	A Web-oriented Architecture 253
	Tailoring for Domain Uses 260
	Mapping Schema and Knowledge Bases 265
	‘Pay as You Benefit’ 275
	A Primer on Knowledge Statistics 279
	Builds and Testing 287
	Some Best Practices 292
	Near-term Potentials 304
	Logic and Representation 310
	Potential Methods and Applications 315
	Workflows and BPM 325
	Semantic Parsing 331
	Cognitive Robotics and Agents 343
	The Sign and Information Theoretics 352
	Peirce: The Philosopher of KR 353
	Reasons to Question Premises 356
	Peirce, The Person 364
	Peirce, The Philosopher 367
	Peirce, The Polymath 375
	An Obsession with Terminology 379
	Peirce, The Polestar 381
	Resources About Peirce 382
	Components 390
	Structure 393
	Capabilities and Uses 398
	Preface
	Introduction
	Structure of the Book
	Overview of Contents
	Key Themes

	Information, Knowledge, Representation
	What is Information?
	Some Basics of Information
	The Structure of Information
	Forms of Structure
	Some Structures are More Efficient
	Evolution Favors Efficient Structures
	The Meaning of Information

	What is Knowledge?
	The Nature of Knowledge
	Knowledge as Belief
	Doubt as the Impetus of Knowledge

	What is Representation?
	The Shadowy Object
	Three Modes of Representation
	Peirce’s Semiosis and Triadomany
	Knowledge Representation in Context

	The Situation
	Information and Economic Wealth
	The X Factor of Information
	Knowledge and Innovation

	Untapped Information Assets
	Valuing Information as an Asset
	Lost Value in Information
	The Information Enterprise

	Impediments to Information Sharing
	Cultural Factors
	Tooling and Technology
	Perspectives and Priorities

	The Opportunity
	KM and A Spectrum of Applications
	Some Premises
	Potential Applications
	A Minimal Scaffolding

	Data Interoperability
	The Data Federation Pyramid
	Benefits from Interoperability
	A Design for Interoperating

	Knowledge-based Artificial Intelligence
	Machine Learning
	Knowledge Supervision
	Feature Engineering

	The Precepts
	Equal Class Data Citizens
	The Structural View
	The Formats View
	The Content View

	Addressing Semantic Heterogeneity
	Sources of Semantic Heterogeneity
	Role of Semantic Technologies
	Semantics and Graph Structures

	Carving Nature at the Joints
	Forming ‘Natural’ Classes
	A Mindset for Categorization
	Connections Create Graphs
	A Grammar for Knowledge Representation

	The Universal Categories
	A Foundational Mindset
	A Common Grounding in Peirce
	Truth is Testable and Fallible
	Upper Ontologies, Context, and Perspective
	Being Attuned to Nature

	Firstness, Secondness, Thirdness
	Constant Themes of Three
	Summary of the Universal Categories
	The Irreducible Triad

	The Lens of the Universal Categories
	An Aha! Moment
	Grokking the Universal Categories
	Applying the Universal Categories
	The Categories and Categorization

	A KR Terminology
	Things of the World
	Entities, Attributes, and Concepts
	What is an Event?

	Hierarchies in Knowledge Representation
	Types of Hierarchical Relationships
	Structures Arising from Hierarchies

	A Three-Relations Model
	Attributes, the Firstness of Relations
	External Relations, the Secondness of Relations
	Representations, the Thirdness of Relations
	The Basic Statement

	KR Vocabulary and Languages
	Logical Considerations
	First-order Logic and Inferencing
	Deductive Logic
	Inductive Logic
	Abductive Logic
	Redux: The Nature of Knowledge
	Particulars, Generals, and Description Logics

	Pragmatic Model and Language Choices
	RDF: A Universal Solvent
	OWL 2: The Knowledge Graph Language
	W3C: Source for Other Standards

	The KBpedia Vocabulary
	Structured on the Universal Categories
	Three Main Hierarchies
	The Instances Vocabulary
	The Relations Vocabulary
	Attributes Relations (1ns)
	External Relations (2ns)
	Representation Relations (3ns)

	The Generals (KR Domain) Vocabulary
	Other Vocabulary Considerations
	Components of Knowledge Representation

	Keeping the Design Open
	The Context of Openness
	An Era of Openness
	The Open World Assumption
	Open Standards

	Information Management Concepts
	Things, Not Strings
	The Idea and Role of Reference Concepts
	Punning for Instances and Classes

	Taming a Bestiary of Data Structs
	Rationale for a Canonical Model
	The RDF Canonical Data Model
	Other Benefits from a Canonical Model

	Modular, Expandable Typologies
	Types as Organizing Constructs
	The Type-Token Distinction
	Types and Natural Classes
	Very Fine-Grained Entity Types

	A Flexible Typology Design
	Construction of the Hierarchical Typologies
	Typologies are Modular
	Typologies are Expandable

	KBpedia’s Typologies
	Full Listing of Typologies
	‘Core’ Typologies
	Tailoring Your Own Typologies

	Knowledge Graphs and Bases
	Graphs and Connectivity
	Graph Theory
	The Value of Connecting Information
	Graphs as Knowledge Representations

	Upper, Domain and Administrative Ontologies
	A Lay Introduction to Ontologies
	Ontologies are A Family of Graphs
	Incipient Potentials
	Good Ontology Design and Construction

	KBpedia’s Knowledge Bases
	KBpedia KBs
	Primary KBs
	Secondary KBs
	Candidate KBs for Expansion
	Building KR Systems

	Platforms and Knowledge Management
	Uses and Work Splits
	The State of Tooling
	TBox, ABox, and Work Splits
	Content Workflows

	Platform Considerations
	Supporting Multiple Purposes
	Search
	Knowledge Management
	An Ontologies-based Design
	Enterprise Considerations

	A Web-oriented Architecture
	Web-orientation and Standards
	A Modular Web Services Design
	An Interoperability Architecture

	Building Out The System
	Tailoring for Domain Uses
	A Ten-point Checklist for Domain Use
	An Inventory of Assets
	Phased Implementation Tasks and Plan
	Domain Knowledge Graph
	Instance Data Population
	Analysis and Content Processing
	Use and Maintenance
	Testing and Mapping
	Documentation

	Mapping Schema and Knowledge Bases
	Mapping Methods and Tools
	Building Out the Schema
	Overview of Approaches
	Some Design Guidelines
	1. Be Lightweight and Modular
	2. Use Reference Structures
	3. Re-use Existing Structure
	4. Build Incrementally
	5. Use Simple Predicates
	6. Test for Logic and Consistency
	7. Map to External Ontologies

	Building Out the Instances (Knowledge Bases)
	1. Update Changing Knowledge
	2. Process the Input KBs
	3. Install, Run and Update the System
	4. Test and Vet Placements
	5. Test and Vet Mappings
	6. Test and Vet Assertions
	7. Ensure Completeness
	8. Test and Vet Coherence
	9. Generate Training Sets
	10. Test and Vet Learners
	Rinse and Repeat

	‘Pay as You Benefit’
	Placing the First Stake
	Incremental Build Outs Follow Benefits
	Learn to Quantify and Document Benefits

	Testing and Best Practices
	A Primer on Knowledge Statistics
	Two Essential Metrics, Four Possible Values
	Many Useful Statistics
	Working Toward ‘Gold Standards’

	Builds and Testing
	Build Scripts
	Testing Scripts
	Literate Programming

	Some Best Practices
	Data and Dataset Practices
	Dataset Best Practices
	Linked Data
	Knowledge Structures and Management Practices
	Organizational and Collaborative Best Practices
	Naming and Vocabulary Best Practices
	Best Ontology Practices
	Testing, Analysis and Documentation Practices
	Testing Best Practices
	Analytical Best Practices
	Documentation Best Practices
	Practical Potentials and Outcomes

	Potential Uses in Breadth
	Near-term Potentials
	Word Sense Disambiguation
	Relation Extraction
	Reciprocal Mapping
	Extreme Knowledge Supervision

	Logic and Representation
	Automatic Hypothesis Generation
	Encapsulating KBpedia for Deep Learning
	Measuring Classifier Performance
	Thermodynamics of Representation

	Potential Methods and Applications
	Self-Service Business Intelligence
	Semantic Learning
	Nature As An Information Processor
	Gaia Hypothesis Test

	Potential Uses in Depth
	Workflows and BPM
	Concepts and Definitions
	The BPM Process
	Optimal Approaches and Outcomes

	Semantic Parsing
	A Taxonomy of Grammars
	Computational Semantics
	Three Possible Contributions Based on Peirce
	#1 - Peircean POS Tagging
	#2 - Machine Learning Understanding Based on Peirce
	#3 - Peirce Grammar

	Cognitive Robotics and Agents
	Lights, Camera, Action!
	Grounding Robots in Reality
	Robot as Pragmatist

	Conclusion
	The Sign and Information Theoretics
	Peirce: The Philosopher of KR
	Knowledge and Peirce
	Time to Move from Theory to Practice

	Reasons to Question Premises
	AI is a Field of KR
	Hurdles to be Overcome
	Of Crystals and Robots

	Appendix A:
	Perspectives on Peirce
	Peirce, The Person
	Peirce, The Philosopher
	Peirce’s Architectonic
	Chance, Existents, and Continuity: Real
	Chance
	Existents
	Continuity
	What is Real
	Leaning Into Pragmatism

	Peirce, The Polymath
	Mathematics
	Cenoscopy
	Idioscopy
	Scientist
	Inventor
	Humanist, as Person

	An Obsession with Terminology
	Peirce, The Polestar
	Resources About Peirce

	Appendix B:
	The KBpedia Resource
	Components
	The KBpedia Knowledge Ontology (KKO)
	The KBpedia Knowledge Bases
	The KBpedia Typologies

	Structure
	Capabilities and Uses

	Appendix C:
	KBpedia Feature Possibilities
	What is a Feature?
	A (Partial) Inventory of Natural Language and KB Features
	Feature Engineering for Practical Limits
	Considerations for a Feature Science
	Role of a Platform

	Glossary
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

	Index

