Posted:January 20, 2015

Openness; courtesy of Magelia WebStoreSome Annotated References in Relation to Knowledge-based Artificial Intelligence

Distant supervision, earlier or alternatively called self-supervision or weakly-supervised,  is a method to use knowledge bases to label entities automatically in text, which is then used to extract features and train a machine learning classifier. The knowledge bases provide coherent positive training examples and avoid the high cost and effort of manual labelling. The method is generally more effective than unsupervised learning, though with similar reduced upfront effort. Large knowledge bases such as Wikipedia or Freebase are often used as the KB basis.

The first acknowledged use of distant supervision was Craven and Kumlien in 1999 (#11 below, though they used the term weak supervision); the first use of the formal term distant supervision was in Mintz et al. in 2009 (#21 below). Since then, the field has been a very active area of research.

Here are forty of the more seminal papers in distant supervision, with annotated comments for many of them:

  1. Alan Akbik, Larysa Visengeriyeva, Priska Herger, Holmer Hemsen, and Alexander Löser, 2012. “Unsupervised Discovery of Relations and Discriminative Extraction Patterns,” in COLING, pp. 17-32. 2012. (Uses a method that discovers relations from unstructured text as well as finding a list of discriminative patterns for each discovered relation. An informed feature generation technique based on dependency trees can significantly improve clustering quality, as measured by the F-score. This paper uses Unsupervised Relation Extraction (URE), based on the latent relation hypothesis that states that pairs of words that co-occur in similar patterns tend to have similar relations. This paper discovers and ranks the patterns behind the relations.)
  2. Marcel Ackermann, 2010. “Distant Supervised Relation Extraction with Wikipedia and Freebase,” internal teaching paper from TU Darmstadt.
  3. Enriique Alfonesca, Katja Filippova, Jean-Yves Delort, and Guillermo Garrido, 2012. “Pattern Learning for Relation Extraction with a Hierarchical Topic Model,” inProceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers-Volume 2, pp. 54-59. Association for Computational Linguistics, 2012.
  4. Alessio Palmero Aprosio, Claudio Giuliano, and Alberto Lavelli, 2013. “Extending the Coverage of DBpedia Properties using Distant Supervision over Wikipedia,.” In NLP-DBPEDIA@ ISWC. 2013. (Does not suggest amazing results.)
  5. Isabelle Augenstein, Diana Maynard, and Fabio Ciravegna, 2014. “Distantly Supervised Web Relation Extraction for Knowledge Base Population,” in Semantic Web Journal (forthcoming). (The approach reduces the impact of data sparsity by making entity recognition tools more robust across domains and extracting relations across sentence boundaries using unsupervised co-reference resolution methods.) (Good definitions of supervised, unsupervised, semi-supervised and distant supervised.) (This paper aims to improve the state of the art in distant supervision for Web extraction by: 1) recognising named entities across domains on heterogeneous Web pages by using Web-based heuristics; 2) reporting results for extracting relations across sentence boundaries by relaxing the distant supervision assumption and using heuristic co-reference resolution methods; 3) proposing statistical measures for increasing the precision of distantly supervised systems by filtering ambiguous training data, 4) documenting an entitycentric approach for Web relation extraction using distant supervision; and 5) evaluating distant supervision as a knowledge base population approach and evaluating the impact of our different methods on information integration.)
  6. Pedro HR Assis and Marco A. Casanova, 2014. “Distant Supervision for Relation Extraction using Ontology Class Hierarchy-Based Features,” in ESWC 2014. (Describes a multi-class classifier for relation extraction, constructed using the distant supervision approach, along with the class hierarchy of an ontology that, in conjunction with basic lexical features, improves accuracy and recall.) (Investigates how background data can be even further exploited by testing if simple statistical methods based on data already present in the knowledge base can help to filter unreliable training data.) (Uses DBpedia as source, Wikipedia as target. There is also a YouTube video that may be viewed.)
  7. Isabelle Augenstein, 2014. “Joint Information Extraction from the Web using Linked Data, I. Augenstein’s Ph.D. proposal at the University of Sheffield.
  8. Isabelle Augenstein, 2014. “Seed Selection for Distantly Supervised Web-Based Relation Extraction,” in Proceedings of SWAIE (2014). (Provides some methods for better seed determinations; also uses LOD for some sources.)
  9. Justin Betteridge, Alan Ritter and Tom Mitchell, 2014. “Assuming Facts Are Expressed More Than Once,” in The Twenty-Seventh International Flairs Conference. 2014. (
  10. R. Bunescu, R. Mooney., 2007. “Learning to Extract Relations from the Web Using Minimal Supervision,” in Annual Meeting for the Association for Computational Linguistics, 2007.
  11. Mark Craven and Johan Kumlien. 1999. “Constructing Biological Knowledge Bases by Extracting Information from Text Sources,” in ISMB, vol. 1999, pp. 77-86. 1999. (Source of weak supervision term.)
  12. Daniel Gerber and Axel-Cyrille Ngonga Ngomo, 2012. “Extracting Multilingual Natural-Language Patterns for RDF Predicates,” in Knowledge Engineering and Knowledge Management, pp. 87-96. Springer Berlin Heidelberg, 2012. (The idea behind BOA is to extract natural language patterns that represent predicates found on the Data Web from unstructured data by using background knowledge from the Data Web, specifically DBpedia. See further the code or demo.)
  13. Edouard Grave, 2014. “Weakly Supervised Named Entity Classification,” in Workshop on Automated Knowledge Base Construction (AKBC), 2014. (Uses a novel PU (positive and unlabelled) method for weakly supervised named entity classification, based on discriminative clustering.) (Uses a simple string match between the seed list of named entities and unlabeled text from the specialized domain, it is easy to obtain positive examples of named entity mentions.)
  14. Edouard Grave, 2014. “A Convex Relaxation for Weakly Supervised Relation Extraction,” in Conference on Empirical Methods in Natural Language Processing (EMNLP). 2014. (Addressed the multiple label/learning problem. Seems to outperform other state-of-the-art extractors, though the author notes in conclusion that kernel methods should also be tried. See other Graves 2014 reference.)
  15. Malcolm W. Greaves, 2014. “Relation Extraction using Distant Supervision, SVMs, and Probabilistic First Order Logic,” PhD dissertation, Carnegie Mellon University, 2014. (Useful literature review and pipeline is one example.)
  16. Raphael Hoffmann, Congle Zhang, Xiao Ling, Luke Zettlemoyer, and Daniel S. Weld, 2011. “Knowledge-Based Weak Supervision for Information Extraction of Overlapping Relations,” in Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies-Volume 1, pp. 541-550. Association for Computational Linguistics, 2011. (A novel approach for multi-instance learning with overlapping relations that combines a sentence-level extraction model with a simple, corpus-level component for aggregating the individual facts. (Uses a self-supervised, relation-specific IE system which learns 5025 relations.) (“Knowledge-based weak supervision, using structured data to heuristically label a training corpus, works towards this goal by enabling the automated learning of a potentially unbounded number of relation extractors.” ““weak” or “distant” supervision, creates its own training data by heuristically matching the contents of a database to corresponding text”.) (Also introduces MultiR)
  17. Ander Intxaurrondo, Mihai Surdeanu, Oier Lopez de Lacalle, and Eneko Agirre, 2013. “Removing Noisy Mentions for Distant Supervision,” in Procesamiento del Lenguaje Natural 51 (2013): 41-48. (Suggests filter methods to remove some noisy potential assignments.)
  18. Mitchell Koch, John Gilmer, Stephen Soderland, and Daniel S. Weld, 2014. “Type-Aware Distantly Supervised Relation Extraction with Linked Arguments,” in Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pages 1891–1901, October 25-29, 2014, Doha, Qatar. (Investigates four orthogonal improvements to distance supervision: 1) integrating named entity linking (NEL) and 2) coreference resolution into argument identification for training and extraction, 3) enforcing type constraints of linked arguments, and 4) partitioning the model by relation type signature.) (Enhances the MultiR basis; see http://cs.uw.edu/homes/mkoch/re for code and data.)
  19. Yang Liu, Kang Liu, Liheng Xu, and Jun Zhao, 2014. “Exploring Fine-grained Entity Type Constraints for Distantly Supervised Relation Extraction,” in Proceedings of COLING 2014, the 25th International Conference on Computational Linguistics: Technical Papers, pages 2107–2116, Dublin, Ireland, August 23-29 2014. (More fine-grained entities produce better matching results.)
  20. Bonan Min, Ralph Grishman, Li Wan, Chang Wang, and David Gondek, 2013. “Distant Supervision for Relation Extraction with an Incomplete Knowledge Base,” in HLT-NAACL, pp. 777-782. 2013. (Standard distant supervision does not properly account for the negative training examples.)
  21. Mike Mintz, Steven Bills, Rion Snow, Dan Jurafsky, 2009. “Distant Supervision for Relation Extraction without Labeled Data,” in Proceedings of the 47th Annual Meeting of the ACL and the 4th IJCNLP of the AFNLP, pages 1003–1011, Suntec, Singapore, 2-7 August 2009. (Because their algorithm is supervised by a database, rather than by labeled text, it does not suffer from the problems of overfitting and domain-dependence that plague supervised systems. First use of the ‘distant supervision’ approach.)
  22. Ndapandula T. Nakashole, 2012. “Automatic Extraction of Facts, Relations, and Entities for Web-Scale Knowledge Base Population,” Ph.D. Dissertation for the University of Saarland, 2012. (Excellent overview and tutorial; introduces the tools Prospera, Patty and PEARL.)
  23. Truc-Vien T. Nguyen and Alessandro Moschitti, 2011. “End-to-end Relation Extraction Using Distant Supervision from External Semantic Repositories,” in Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies: short papers-Volume 2, pp. 277-282. Association for Computational Linguistics, 2011. (Shows standard Wikipedia text can also be a source for relations.)
  24. Marius Paşca, 2007. “Weakly-Supervised Discovery of Named Entities Using Web Search Queries,” in Proceedings of the Sixteenth ACM Conference on Conference on Information and Knowledge Management, pp. 683-690. ACM, 2007.
  25. Marius Paşca, 2009. “Outclassing Wikipedia in Open-Domain Information Extraction: Weakly-Supervised Acquisition of Attributes Over Conceptual Hierarchies,” inProceedings of the 12th Conference of the European Chapter of the Association for Computational Linguistics, pp. 639-647. Association for Computational Linguistics, 2009.
  26. Kevin Reschke, Martin Jankowiak, Mihai Surdeanu, Christopher D. Manning, and Daniel Jurafsky, 2012. “Event Extraction Using Distant Supervision,” in Proceedings of the Ninth International Conference on Language Resources and Evaluation (LREC 2014), Reykjavik. 2014. (They demonstrate that the SEARN algorithm outperforms a linear-chain CRF and strong baselines with local inference.)
  27. Sebastian Riedel, Limin Yao, and Andrew McCallum, 2010. “Modeling Relations and their Mentions without Labeled Text,” in Machine Learning and Knowledge Discovery in Databases, pp. 148-163. Springer Berlin Heidelberg, 2010. (They use a factor graph to determine if the two entities are related, then apply constraint-driven semi-supervision.)
  28. Alan Ritter, Luke Zettlemoyer, Mausam, and Oren Etzioni, 2013. “Modeling Missing Data in Distant Supervision for Information Extraction,” TACL 1 (2013): 367-378. (Addresses the question of missing data in distant supervision.) (Appears to address many of the initial MultiR issues.)
  29. Benjamin Roth and Dietrich Klakow, 2013. “Combining Generative and Discriminative Model Scores for Distant Supervision,” in EMNLP, pp. 24-29. 2013.(By combining the output of a discriminative at-least-one learner with that of a generative hierarchical topic model to reduce the noise in distant supervision data, the ranking quality of extracted facts is significantly increased and achieves state-of-the-art extraction performance in an end-to-end setting.)
  30. Benjamin Rozenfeld and Ronen Feldman, 2008. “Self-Supervised Relation Extraction from the Web,” in Knowledge and Information Systems 17.1 (2008): 17-33.
  31. Hui Shen, Mika Chen, Razvan Bunescu and Rada Mihalcea, 2014. “Wikipedia Taxonomic Relation Extraction using Wikipedia Distant Supervision.” (Negative examples based on Wikipedia revision history; perhaps problematic. Interesting recipes for sub-graph extractions. Focused on is-a relationship. See also http://florida.cs.ohio.edu/wpgraphdb/.)
  32. Stephen Soderland, Brendan Roof, Bo Qin, Shi Xu, Mausam, and Oren Etzioni, 2010. “Adapting Open Information Extraction to Domain-Specific Relations,” in AI Magazine 31, no. 3 (2010): 93-102. (A bit more popular treatment; no new ground.)
  33. Mihai Surdeanu, Julie Tibshirani, Ramesh Nallapati, and Christopher D. Manning, 2012. “Multi-Instance Multi-Label Learning for Relation Extraction,” in Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning, pp. 455-465. Association for Computational Linguistics, 2012. (Provides means to find previously unknown relationships using a graph.)
  34. Shingo Takamatsu, Issei Sato, and Hiroshi Nakagawa, 2012. “Reducing Wrong Labels in Distant Supervision for Relation Extraction,” in Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Long Papers-Volume 1, pp. 721-729. Association for Computational Linguistics, 2012. (Proposes a method to reduce the incidence of false labels.)
  35. Bilyana Taneva and Gerhard Weikum, 2013. “Gem-based Entity-Knowledge Maintenance,” in Proceedings of the 22nd ACM International Conference on Conference on Information & Knowledge Management, pp. 149-158. ACM, 2013. (Methods to create the text snippets — GEMS — that are used to train the system.)
  36. Andreas Vlachos and Stephen Clark, 2014. Application-Driven Relation Extraction with Limited Distant Supervision, in COLING 2014 (2014): 1. (Uses the Dagger learning algorithm.)
  37. Wei Xu, Raphael Hoffmann, Le Zhao, and Ralph Grishman, 2013. “Filling Knowledge Base Gaps for Distant Supervision of Relation Extraction,” in ACL (2), pp. 665-670. 2013. (Addresses the problem of false negative training examples mislabeled due to the incompleteness of knowledge bases.)
  38. Wei Xu Ralph Grishman and Le Zhao, 2011. “Passage Retrieval for Information Extraction using Distant Supervision,” in Proceedings of the 5th International Joint Conference on Natural Language Processing, pages 1046–1054, Chiang Mai, Thailand, November 8 – 13, 2011. (Filtering of candidate passages improves quality.)
  39. Y. Yan, N. Okazaki, Y. Matsuo, Z. Yang, M. Ishizuka, 2009. “Unsupervised Relation Extraction by Mining Wikipedia Texts Using Information from the Web,” in Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on Natural Language Processing of the AFNLP, 2009.
  40. Xingxing Zhang, Jianwen Zhang, Junyu Zeng, Jun Yan, Zheng Chen, and Zhifang Sui, 2013. “Towards Accurate Distant Supervision for Relational Facts Extraction,” in ACL (2), pp. 810-815. 2013. (Three factors on how to improve the accuracy of distant supervision.)

Posted by AI3's author, Mike Bergman Posted on January 20, 2015 at 10:26 am in Artificial Intelligence, Big Structure | Comments (0)
The URI link reference to this post is: https://www.mkbergman.com/1833/forty-seminal-distant-supervision-articles/
The URI to trackback this post is: https://www.mkbergman.com/1833/forty-seminal-distant-supervision-articles/trackback/
Posted:January 12, 2015

Openness; courtesy of Magelia WebStoreThe Internet Has Catalyzed Trends that are Creative, Destructive and Transformative

Something very broad and profound has been happening over the recent past. It is not something that can be tied to a single year or a single event. It is also something that is quite complex in that it is a matrix of forces, some causative and some derivative, all of which tend to reinforce one another to perpetuate the trend. The trend that I am referring to is openness, and it is a force that is both creative and destructive, and one that in retrospect is also inevitable given the forces and changes underlying it.

It is hard to gauge exactly when the blossoming of openness began, but by my lights the timing corresponds to the emergence of open source and the Internet. Early bulletin board systems (BBS) often were distributed with source code, and these systems foreshadowed the growth of the Internet. While the Internet itself may be dated to ARPA efforts from 1969, it is really more the development of the Web around 1991 that signaled the real growth of the medium.

Over the past quarter century, the written use of the term “open” has increased more than 40% in frequency in comparison to terms such as “near” or “close” [1], a pretty remarkable change in usage for more-or-less common terms, as this figure shows:

Trends in Use of "Open" Concept
Though the idea of “openness” is less common than “open”, its change in written use has been even more spectacular, with its frequency more than doubling (112%) over the past 25 years. The change in growth slope appears to coincide with the mid-1980s.

Because “openness” is more of a mindset or force — a point of view, if you will — it is not itself a discrete thing, but an idea or concept. In contemplating this world of openness, we can see quite a few separate, yet sometimes related, strands that provide the weave of the “openness” definition [2]:

  • Open source — refers to a computer program in which the source code is available to the general public for use and/or modification from its original design. Open-source code is typically a collaborative effort where programmers improve upon the source code and share the changes within the community so that other members can help improve it further
  • Open standards — are standards and protocols that are fully defined and available for use without royalties or restrictions; open standards are often developed in a public, collaborative manner that enables stakeholders to suggest and modify features, with adoption generally subject to some open governance procedures
  • Open content — is a creative work, generally based on text, that others can copy or modify; open access publications are a special form of open content that provide unrestricted online access to peer-reviewed scholarly research
  • Open data — is the idea that certain data should be freely available to everyone to use and republish as they wish, without restrictions from copyright, patents or other mechanisms of control; open data is a special form of open content
  • Open knowledge — is what open data becomes when it is useful, usable and used; according to the Open Knowledge Foundation, the key features of openness are availability and access wherein the data must be available as a whole and at no more than a reasonable reproduction cost, preferably by downloading over the Internet
  • Open knowledge bases — are open knowledge packaged in knowledge-base form
  • Open access to communications — means non-discriminatory means to access communications networks; because of the opennesss of access, additional features might emerge including the idea of crowdsourcing (obtaining content, services or ideas from a large group of people), including such major variants as citizen science or crowdfunding (raising funds from a large group of people)
  • Open rights — are an umbrella term to cover the ability to obtain content or data without copyright restrictions and gaining use and access to software or intellectual property via open licenses
  • Open logics — are the use of logical constructs, such as the open world assumption, which enable data and information to be added to existing systems without the need to re-architect the underlying data schema; such logics are important to knowledge management and the continuous additon of new information
  • Open architectures — are means to access existing software and platforms via such means as open APIs (application programming interfaces), open formats (published specifications for digital data) or open Web services
  • Open government — is a governing doctrine that holds citizens have the right to access the documents and proceedings of the government to allow for effective public oversight; it is generally accompanied by means for online access to government data and information
  • Open education — is an institutional practice or programmatic initiative that broadens access to the learning and training traditionally offered through formal education systems, generally to educational materials, curricula or course notes at low or no cost without copyright limitations
  • Open design — is the development of physical products, machines and systems through use of publicly shared design information, often via online collaboration
  • Open research — makes the methodology and results of research freely available via the Internet, and often invites online collaboration; if the research is scientific in nature, it is frequently referred to as open science, and
  • Open innovation — is the use and combination of open and public sources of ideas and innovations with those internal to the organization.

In looking at the factors above, we can ask two formative questions. First, is the given item above primarly a causative factor for “openness” or something that has derived from a more “open” environment? And, second, does the factor have an overall high or low impact on the question of openness. Here is my own plotting of these factors against these dimensions:

Openness Matrix
Early expressions of the “openness” idea help cause the conditions that lead to openness in other areas. As those areas also become more open, a positive reinforcement is passed back to earlier open factors, all leading to a virtuous circle of increased openness. Though perhaps not strictly “open,” other various and related factors such as the democratization of knowledge, broader access to goods and services, more competition, “long tail” access and phenomenon, and in truly open environments, more diversity and more participation, also could be plotted on this matrix.

Once viewed through the umbrella lens of “openness”, it starts to become clear that all of these various “open” aspects are totally remaking information technology and human interaction and commerce. The impacts on social norms and power and governance are just as profound. Though many innovations have uniquely shaped the course of human history — from literacy to mobility to communication to electrification or computerization — none appear to have matched the speed of penetration nor the impact of “openness”.

Separating the Chicken from the Egg

So, what is driving this phenomenon? From where did the concept of “openness” arise?

Actually, this same matrix helps us hypothesize one foundational story. Look at the question of what is causative and what might be its source. The conclusion appears to be the Internet, specifically the Web, as reinforced and enabled by open-source software.

Relatively open access to an environment of connectivity guided by standard ways to connect and contribute began to fuel still further connections and contributions. The positive values of access and connectivity via standard means, in turn, reinforced the understood value of “openness”, leading to still further connections and engagement. More openness is like the dropped sand grain that causes the entire sand dune to shift.

The Web with its open access and standards has become the magnet for open content and data, all working to promote derivative and reinforcing factors in open knowledge, education and government:

Openness Matrix - Annotated
The engine of “openness” tends to reinforce the causative factors that created “openness” in the first place. More knowledge and open aspects of collaboration lead to still further content and standards that lead to further open derivatives. In this manner “openness” becomes a kind of engine that promotes further openness and innovation.

There is a kind of open logic (largely premised on the open world assumption) that lies at the heart of this engine. Since new connections and new items are constantly arising and fueling the openness engine, new understandings are constantly being bolted on to the original starting understandings. This accretive model of growth and development is similar to the depositive layers of pearls or the growth of crystals. The structures grow according to the factors governing the network effect [3], and the nature of the connected growth structures may be represented and modeled as graphs. “Openness” appears to be a natural force underlying the emerging age of graphs [4].

Openness is Both Creative and Destructive . . .

“Openness”, like the dynamism of capitalism, is both creative and destructive [5]. The effects are creative — actually transformative — because of the new means of collaboration that arise based on the new connections between new understandings or facts. “Open” graphs create entirely new understandings as well as provide a scaffolding for still further insights. The fire created from new understandings pulls in new understandings and contributions, all sucking in still more oxygen to keep the innovation cycle burning.

But the creative fire of openness is also destructive. Proprietary software, excessive software rents, silo’ed and stovepiped information stores, and much else are being consumed and destroyed in the wake of openness. Older business models — indeed, existing suppliers — are in the path of this open conflagration. Private and “closed” solultions are being swept before the openness firestorm. The massive storehouse of legacy kindling appears likely to fuel the openness flames for some time to come.

“Openness” becomes a form of adaptive life, changing the nature, value and dynamics of information and who has access to it. Though much of the old economy is — and, will be — swept away in this destructive fire, new and more fecund growth is replacing it. From the viewpoint of the practitioner on the ground, I have not seen a more fertile innovation environment in information technology in more than thirty years of experience.

. . . and Seemingly Inevitable

Once the proper conditions for “openness” were in place, it now seems inevitable that today’s open circumstances would unfold. The Internet, with its (generally) open access and standards, was a natural magnet to attract and promote open-source software and content. A hands-off, unregulated environment has allowed the Internet to innovate, grow, and adapt at an unbelievable rate. So much unconnected dry kindling exists to stoke the openness fire for some time to come.

Of course, coercive state regimes can control the Internet to varying degrees and have limited innovation in those circumstances. Also, any change to more “closed” and less “open” an Internet may also act over time to starve the openness fire. Examples of such means to slow openness include imposing Internet regulation, limiting access (technically, economically or by fiat), moving away from open standards, or limiting access to content. Any of these steps would starve the innovation fire of oxygen.

Adapting to the Era of Openness

The forces impelling openness are strong. But, these observations certainly provide no proof for cause-and-effect. The correspondence of “openness” to the Internet and open source may simply be coincidence. But my sense suggests a more causative role is likely. Further, these forces are strong, and are sweeping before them much in the way of past business practices and proprietary methods.

In all of these regards “openness” is a woven cord of forces changing the very nature and scope of information available to humanity. “Openness”, which has heretofore largely lurked in the background as some unseeing force, now emerges as a criterion by which to judge the wisdom of various choices. “Open” appears to contribute more and be better aligned with current forces. Business models based on proprietary methods or closed information generally are on the losing side of history.

For these forces to remain strong and continue to contribute material benefits, the Internet and its content in all manifestations needs to remain unregulated, open and generally free. The spirit of “open” remains just that, and dependent on open and equal access and rights to the Internet and content.


[1] The data is from Google book trends data based on this query (inspect the resulting page source to obtain the actual data); the years 2009 to 2014 were projected based on prior actuals to 1980; percentage term occurrences were converted to term frequencies by 1/n.
[2] All links and definitions in this section were derived from Wikipedia.
[3] See M.K. Bergman, 2014. “The Value of Connecting Things – Part I: A Foundation Based on the Network Effect,” AI3:::Adaptive Information blog, September 2, 2014.
[4] See M.K. Bergman, 2012. “The Age of the Graph,” AI3:::Adaptive Information blog, August 12, 2012; and  John Edward Terrell, Termeh Shafie and Mark Golitko, 2014. “How Networks Are Revolutionizing Scientific (and Maybe Human) Thought,” Scientific American, December 12, 2014.
[5] Creative destruction is a term from the economist Joseph Schumpeter that describes the process of industrial change from within whereby old processes are incessantly destroyed and replaced by new ones, leading to a constant change of economic firms that are winners and losers.

Posted by AI3's author, Mike Bergman Posted on January 12, 2015 at 9:35 am in Adaptive Innovation, Open Source | Comments (0)
The URI link reference to this post is: https://www.mkbergman.com/1831/the-era-of-openness/
The URI to trackback this post is: https://www.mkbergman.com/1831/the-era-of-openness/trackback/