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THE OPPORTUNITY

harles S. Peirce, the intellectual founder of  pragmatism, a uniquely American
contribution to philosophy, advocated we obtain knowledge by balancing re-

search effort with a likelihood of results. To do so, we should first consider all of the
‘practical effects’ posed by alternatives. We select what deserves more detailed atten-
tion using a mode of logical inference he called abduction. Wherever we have doubt,
we should be open to and pursue the path of  inquiry to unveil  further potential
‘practical effects,’ enhancing our knowledge. In this way, we continually modify what
we believe about the world, and therefore how we act within it.

C

Today, we have the ability and information to query nearly the entire storehouse
of  accumulated  human knowledge.  By combining  general  knowledge  storehouses
with representations of our organizations and domains, we have paths of inquiry
leveraging computers and machine learning to test what we think we know, and to
discover previously hidden anomalies or falsities to propel our knowledge further. As
we have seen with earlier breakpoints in humanity’s abilities to share and process in-
formation, this quest for new truth will bring significant financial benefit across the
full spectrum of economic actors, from individuals and small groups to enterprises
and governments.1 

In this chapter, I discuss these opportunities under three broad tents. The first
tent, more of a foundation, embraces general applications in  knowledge management
(KM). This broad tent may not be the motivating interest, but it does reside on the
path to other capabilities, and it addresses important needs in their own right. The
second tent, more of a process, are the approaches and applications that enable data
interoperability. The techniques of data interoperability are essential for ingesting rel-
evant information leading to knowledge and for unleashing the value of existing in-
formation assets across the organization. The third tent, more an expression of po-
tential, is knowledge-based artificial intelligence. Via KBAI we can cost-effectively create
labeled training sets (supervised learning) and training corpora (unsupervised) for
machine learning to support a variety of tasks from entity and relation recognition
and extraction to categorization, natural language understanding, sentiment analy-
sis, and much more. Like the lizard eating its tail, we can also apply KBAI to our ini -
tial knowledge bases and knowledge graphs that drive these applications, producing
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a virtuous cycle of knowledge expansions and better learning accuracy.

KM AND A SPECTRUM OF APPLICATIONS

Many of the problems of wasted information assets and lack of connections, some
described in the prior chapter, and most with real economic costs, can be ascribed to
a failure of knowledge management. KM is the practice of creating, sharing, finding, an-
notating, connecting, and extending information and knowledge for a given domain.2

The practice includes applications and management platforms; shared workflows,
vocabularies, and organizational schema; training and best practices; and roles for
practitioners. The practice is managed and possibly encouraged by rewards and in-
centives. Software is an  essential component  of knowledge management, but woe-
fully inadequate alone to accomplish it.

Some Premises

The nature of knowledge helps set some parameters for what a knowledge man-
agement system should encompass. First, knowledge is ‘open’ and needs an architec-
ture and design that embraces this openness. This consideration has logical and epis-
temic importance that gets further treatment in Chapter 9. Second, knowledge is ulti-
mately a community reality, since knowledge is what we believe and upon which we
act. Because our means of communicating within the community is via symbols, we
need methods for defining, clarifying, and reconciling the meanings of those sym-
bols, such that we are effectively communicating within the community. This imper-
ative means that we should look to semantic technologies as our representation and
messaging frameworks;  Chapter  5 covers this topic. Moreover, third, we need to de-
sign our knowledge management systems to get maximum pragmatic leverage from
what already exists and what we can support with such a system. We need to design
our systems for knowledge uses, with management a contributing component to that.

Potential Applications

KM includes such applications as  business intelligence,  data warehousing,  data
integration and  federation,  enterprise  information  integration and  management,
competitive intelligence, workflow systems, knowledge representation, and so forth.
Information  management is  a  bit  broader  category  and  adds  such  functions  as
document management,  data management,  enterprise content management, enter-
prise or controlled vocabularies, systems analysis,  information standards and infor-
mation assets management to the functions of KM. Knowledge management also im-
portantly includes pruning (deleting) dated, inaccurate, or otherwise wasteful infor-
mation. An absolute essential for an effective KM system is bridging vocabulary, con-
cept, and representation differences.

These are all important and legitimate knowledge management functions, but we
often pursue them in isolation or under different databases, vocabularies, or concep-
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tual approaches. In point, one could reasonably argue that much of the challenge
that has faced KM has been a lack of coherence or a shared conceptual grounding to
the efforts. The decades-long literature into KM supports such a view of fragmenta-
tion.

A broadly useful KM framework should support a minimum of four application ar-
eas:

 First, some form of governing conceptual and terminological schema is required
by which to reference and ground disparate information sources. In KM systems
based on semantic technologies, this schema takes the form of a knowledge graph
(or ontology);

 Second, given that on average about 80% of an organization’s information base
resides in documents,  natural language processing should be an integral part of
the mix. NLP uses computers to extract meaningful information from natural
language input or produce natural language output. NLP is one method for as-
signing structured data characterizations to text content; without NLP, all such
assignments are manual, which does not scale;3 

 Third, as part of these NLP capabilities, we need various extractors. Entity recog-
nition, the means for identifying specific entities in text, is the first among equals
here. Concept and relation extractors may supplement that.  Extraction meth-
ods involve parsing and tokenization, and then generally the application of
one or more information extraction techniques or algorithms;

 Fourth, tagging is a needed adjunct to extraction. The tag is a keyword or term
we assign to a piece of information (e.g., a picture, article, portion of text, or
video clip). Tags describe the item and enable keyword-based classification
of the information.1 The resulting representation is a form of semi-structured
data. Like extractors, we may use tags  for entities, concepts, attributes, or
relations. When a knowledge graph is employed, we recommend  ontology-
based information extraction (OBIE), which is the use of an ontology to inform
this tagging process.

These are the essential functions required to ‘ingest’ new content and provide
a shared vocabulary via the schema for placing content onto a common footing.
This shared representation is the basis for a series of specific KM format conver-
sions from multiple external sources, and in functions such as search, retrieval,
analysis, and visualization. As we add multiple input sources to the system, we
assign  metadata by source (such as title,  provenance, workflow dates,  formats,
and such) to the content, providing still additional means for searching, filtering,
and aggregating the content.

If the KM system is also a precursor to more knowledge- and intelligence-ori-
ented tasks, we advise including reasoners and mappers. Reasoning is one of many

1 Tagged information is one of the main sources of semi-structured data; see Chapter 5.
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logical tests using inference rules as commonly specified using an ontology language,
and often a description logic. Many reasoners use first-order predicate logic to per-
form  reasoning.  Inference  commonly  proceeds  by  forward  chaining or  backward
chaining (see Chapter 8).  Mapping connects objects in two different sources to one
another, using a specific  property to define the relation. A linkage is a subset of
possible mappings where the connections may be traced and followed. Mappings
are the means by which we bring in multiple information sources leading to a
federation of sources, so that we may use, analyze, or reason over all of them. It
is the central task of data federation. Pairwise mappings result in a combinatorial
explosion of connections as the number of sources increases. A hub-and-spoke
design is the only practical architecture to overcome this problem since it scales
linearly, with a reference set of concepts, such as KBpedia, providing the hub. 

A Minimal Scaffolding

We could stop with this initial configuration and  merely deploy the knowledge
management system for generic KM tasks. This basis, the minimal scaffolding, is suf-
ficient to address the lost opportunities and waste described in the prior chapter.
However, we have our sights set higher than recovering lost opportunities.

The general development path this book recommends is to first address these lost
opportunities, perhaps on a small or departmental basis (see ‘pay as you benefit’ in
Chapter 13). As we gain confidence and climb the learning curve, it is then appropri-
ate to bridge out to encompass more departments and to begin deploying machine
learning to develop bespoke extractors and classifiers, tuned for the relevant nature
of your growing knowledge base. 

We introduce the role of KBpedia here as a lead-in to later chapters. KBpedia is an
open source knowledge graph with maps to leading knowledge bases. Parts III and IV
cover design and deployment topics in detail. Appendix B is a broad overview of KBpe-
dia. Appendix C discusses the features available in KBpedia for machine learning.

DATA INTEROPERABILITY

Data    integration   is  the bringing together of data from heterogeneous and often
physically distributed data sources into a single, coherent view. Sometimes this is the
result  of  searching  across  multiple  sources,  in  which  case  it  is  called  federated
search. However, it is not limited to search. Data integration is a crucial concept in
business  intelligence and  data  warehousing and  a  driver  behind  master  data
management (MDM). Data integration first became a research emphasis within the
biology and computer science communities in the 1980s.4 5 At that time, extreme di-
versity in physical hardware, operating systems, databases, software, and immature
networking protocols hampered the sharing of data. Data interoperability extends be-
yond integration to add unified views for analysis and reasoning across its sources.

By its nature, data integration means that we combine data across two or more
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datasets.  Such integration brings to  light the myriad aspects  of semantic  hetero-
geneities, precisely the kinds of issues why we use semantic technologies. However,
resolving semantic differences, which we probe in detail in Chapter 5,  cannot be ful-
filled by semantic technologies alone. While semantics can address the basis of dif-
ferences in meaning and context, resolution of those differences or deciding between
differing interpretations (that is, ambiguity) also requires many of the tools of artifi-
cial intelligence or natural language processing (NLP). By decomposing this content
into its various sources of semantic heterogeneities — as well as the work required to
provide for such functions as search, disambiguation, mapping, and transformations
— we can begin to understand how all of these components can work together to
help achieve data interoperability. 

The Data Federation Pyramid

It is easy to forget just how far data federation has progressed in the last four or
five  decades.  Before the introduction of  the  IBM personal  computer in  1981,  the
hardware  landscape  was  diverse  and  fragmented.  There  were  mainframes  from
weird 36-bit Data General systems to DEC PDP minicomputers to the PCs themselves.
Even on PCs, there were multiple operating systems, and many then claimed that CP/
M was ascendant, let alone the upstart MS-DOS or the gorilla threat of IBM’s OS/2 (in
development). Hardware differences were manifest, and operating systems were di-
verse; nothing worked with anything else. 

‘Data federation’ at that time needed to first look at issues at the iron or silicon or
OS  level.  Those  problems  were  pretty  daunting,  though  the  clever  folks  behind
Ethernet and Novell with PCs were about to show one route around the traffic jam.
Client-server and all of the ‘N-tier’ networking speak soon followed. It was an era of
progress, but still, one of costly and proprietary answers to get devices to talk to one
another.  That is  where  the Internet,  specifically  the Web protocols  of  HTTP and
HTML and the  Mozilla (then commercially Netscape) browser came in. Within five
years (actually less) from 1994, the Internet took off like a rocket, doubling in size ev-
ery 3-6 months.

In the early years of trying to find standards and conventions for representing
semi-structured data (though not yet called that), the primary emphasis was on data
representation and transfer protocols. In the financial realm, one standard dating
from the late 1970s was electronic data interchange (EDI). In information and library
science, the MARC communications format for sharing catalog metadata arose in the
1960s and remains well-used in many countries today. In science, there were tens of
exchange formats proposed with varying degrees of acceptance. Notable examples
are  the abstract  syntax  notation  (ASN.1),  TeX (a  typesetting  system  created  by
Donald Knuth and its variants such as  LaTeX), hierarchical data format (HDF),  CDF
(common  data  format),  and  the  like,  as  well  as  commercial  formats  such  as
Post  S  cript  , PDF (portable document format), and RTF (rich text format). One of these
formats was the ‘standard generalized markup language’ (SGML), first published in
1986. SGML was flexible enough to represent either formatting or data exchange.
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However, with its flexibility came complexity. Only when its two simpler progeny
arose, namely  HTML (HyperText Markup Language) for describing Web pages and,
later,  XML (eXtensible  Markup  Language)  for  data  exchange,  did  variants  of  the
SGML form emerge as widely used common standards. JSON has also now joined this
group as a leading data representation. The Internet and its  TCP/IP and Web HTTP
protocols and XML standards, in particular, have been major contributors to over-
coming respective physical and syntactical and data exchange heterogeneities. 

I illustrate this historical progression over the decades, from the bottom up, using
the data federation pyramid in Figure 4-1. Current progress and adoption place us, to-
day, with a stack that has boundaries at the data (and knowledge) representation, se-
mantics, and pragmatics layers in the Figure 4-1 pyramid. We show only a part of the
progress in Web standards. The TCP/IP and HTTP protocols were essential to over-
come the network bottlenecks; we show OWL and RDF due to their importance to our
story and their role in addressing semantics issues. We can not integrate information
as knowledge until we overcome the semantic challenges. Pragmatics covers under-
standing the kinds of practical needs and implications resulting from our integration
of information. Trust refers to the ability to identify and track the provenance of our
information to judge whether we use and integrate it or not. These upper layers of
the stack are some of the unresolved issues we attend to over the rest of this book.

Benefits from Interoperability

Data interoperability should be one of the  chief emphases of a knowledge man-
agement initiative because of these challenges, many of which have  remained un-
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solved for decades: 

 80% of all available information is in text or documents (unstructured); 

 40% of standard IT project expenses are devoted to data integration in one form
or another, due to the manual effort needed for data migration and mapping; 

 Information volumes are now doubling in fewer than two years;

 Current information resides in individual stores, stovepiped from one another,
with few or no connections to external knowledge sources; 

 Other trends including smartphones and sensors are further accelerating infor-
mation growth; and 

 Effective business intelligence requires the use of quality, integrated data. 

The problem is creating a focus and then beginning to implement a data interoper-
ability initiative. We know it promises to deliver some key, measurable benefits: 

 Efficiency — trillions of dollars are spent each year globally in the research, cre-
ation, re-use, publishing, storing and browsing of information.  Relevant infor-
mation is hard to find, and sometimes we overlook useful but obscure informa-
tion. The lack of reuse of prior good content because it is not discoverable is un-
conscionable given today’s technologies; 

 Cost — missed information or lack of awareness of relevant information leads to
increased time, increased direct costs (labor and material), and increased indi-
rect costs to re-create it. Awareness, understanding, and re-use of existing in-
formation would save millions or more for large firms annually if we could over-
come these interoperability gaps; 

 Insight — drawing connections between previously unconnected things and en-
abling discovery are essential inputs to innovation, itself the overall driver of
productivity (and, therefore, wealth) gains. The reinforcing leverage of interop-
erability resides in its ability to bring new understandings and insights; and 

 Capture —  we benefit by capturing the many  fields, data streams, APIs, map-
pings,  DBs,  datasets,  Web content,  on-the-fly  discoveries,  and device sensors
available through the connectedness of the Web and the Internet of things (IoT).

For decades, the vision of data interoperability has mostly remained unfulfilled.
Though significant progress has occurred in climbing the data federation pyramid,
only when one is at the very topmost layers can we achieve actual data interoperabil-
ity. The semantics are an absolute threshold. A few practitioners and a few  exem-
plary organizations have demonstrated the worth of semantic technologies to lever-
age this next step. Doing so adheres to Peirce’s pragmatic maxim, the understanding
of a topic or object by an apprehension of all of the practical consequences poten-
tially arising from it.

Adopting knowledge graphs is a prerequisite for applying semantic technologies
to the fullest. Once adopted with the graph mindset embraced, it is then straightfor-
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ward to extend the scope of the graphs a bit to encompass labels for user interfaces
and calls to small, external Web applications. We discuss these so-called administra-
tive ontologies in  Chapter 11. These practical techniques cost little to implement and
can be a useful adjunct to standard knowledge maintenance. 

Material progress on the data interoperability challenge will bring us one step
closer to self-service information management. The benefits and flexibilities from
doing so will extend from creating data and content to publishing and deploying it.
The fact that any source — internal or external — or format — unstructured, semi-
structured and structured — can be brought together with semantic technologies is a
qualitative boost over existing KM approaches. Further, since we represent all infor-
mation via simple text formats, we can readily manipulate and manage that informa-
tion with easy to understand tools and applications. Reliance on open standards and
languages by semantic technologies also leads to greater use and availability of open
source systems. In short, self-service information management could be one of the
great benefits from interoperability. These are the kinds of opportunities that will
enable knowledge management to fulfill its vision.

A Design for Interoperating

Ultimately, since we express all of our content and information with human lan-
guage, we need to start there to understand the first sources of semantic differences.
Like the differences in human language, we also have differences in worldviews and
experience. These differences are often conceptual and reveal distinctions in real-
world perspectives  and experiences. From there,  we encounter differences in our
specific realms of expertise or concern, or the  relevant domain(s) for our informa-
tion and knowledge. Then, as we probe details, we give our observations and charac-
terizations data and values to specify and quantify our observations.  The attributes
of these data are subject to the same semantic vagaries as concepts. Attributes also
pose challenges in how we measure and express units.

The current challenge is to resolve differences in meaning, or semantics, between
disparate data sources. Your ‘glad’ may be someone else’s ‘happy’ and you may orga-
nize the world into countries while others organize by regions or cultures. From the
conceptual to actual data, then, we see differences in perspective, vocabularies, mea-
sures, and conventions. Only by systematically understanding these sources of het-
erogeneity — and then explicitly addressing them — can we begin to try to put differ-
ent information on a common footing. Only by reconciling these differences can we
begin to get data to interoperate. Some of these differences and heterogeneities are
intrinsic to the nature of the data at hand. Some of these heterogeneities also arise
from the basis and connections asserted between datasets, as misuse of the  sameAs
predicate showed in early linked data applications. Fortunately, in many areas, we
are transitioning due to technological progress to overcome many of these sources of
semantic heterogeneity. Semantic  Web approaches where data items are assigned
unique IRIs are another source of making integration easier.  Moreover, whether all
agree from a cultural aspect if it is  right, we  also see English becoming the  lingua
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franca of research and data.
To bring about a basis for data interoperability, John Blossom argues the impor-

tance of Web approaches and architectures; incorporation of external data; leverage
of Web applications; and, use of open standards and APIs to avoid vendor lock-in.6

Much, if not all of this, can be aided by open source software. Open source is not in-
dispensable: commercial products that embrace these approaches can also be com-
patible components across the stack. Further, we need to resolve semantic hetero-
geneities. Though only a single layer of the pyramid in Figure 4-1 above, resolving se-
mantics is a complicated task and may involve  structural conflicts (such as naming,
generalization, aggregation), domain conflicts (such as schemas or units), or data con-
flicts (such as synonyms or missing values). Researchers have identified nearly 40 dis-
tinct types of possible semantic heterogeneities, to which we delve into more detail
in Chapter 5.

Semantic technologies give us the basis for understanding differences in meaning
across sources, specifically geared to address real-world usage and context. Semantic
tools are essential for providing common bases for relating structured data across
various sources and contexts. These same semantic tools are also the basis by which
we can determine what unstructured content ‘means,’ thus providing the structured
data tags that also enable us to relate documents to conventional data sources (from
databases, spreadsheets, tables, and the like). These semantic technologies are thus
the key enablers for making information — unstructured, semi-structured and struc-
tured — understandable to both humans and machines across sources. Such under-
standings are then the basis for powering the artificial intelligence applications in-
volving human language.

An initial  embrace of semantic technologies  for knowledge management often
naturally leads to adopting knowledge graphs. These ontologies provide a means to
define and describe these different worldviews. Referentially integral languages
such as  RDF (Resource Description Framework) and its schema implementation
(RDF-S) or the Web ontological description language OWL are leading standards
among other emerging ones for machine-readable means to communicate the se-
mantics of data. You can read more about the languages of these semantic tech-
nologies in Chapter 8.

Adoption of semantic technologies does not  necessarily mean open data nor
open source (though they are suitable for these purposes with many open source
tools available). We can apply the techniques equivalently to internal, closed, propri-
etary data and structures. We can use these techniques as a basis for bringing exter-
nal information into the enterprise. The use of ‘open’ here refers to the critical use of
the open world assumption (Chapter 9).  Moreover, the design practices we recom-
mend here do not require replacing current systems and assets; they can be applied
equally to public or proprietary information; and, they can be tested and deployed
incrementally at low risk and cost. The very foundations of our recommended prac-
tice encourage a learn-as-you-go approach and active and agile adaptation. While
embracing semantic technologies can lead to quite disruptive benefits and changes,
we can do so as a layered initiative with minimal disruption. Incremental adoption is

73

https://en.wikipedia.org/wiki/Web_Ontology_Language
https://en.wikipedia.org/wiki/RDFS
https://en.wikipedia.org/wiki/Resource_Description_Framework
http://en.wikipedia.org/wiki/Lingua_franca


A KNOWLEDGE REPRESENTATION PRACTIONARY

one of the most compelling aspects of semantic technologies.

KNOWLEDGE-BASED ARTIFICIAL INTELLIGENCE

Artificial intelligence (AI) is the use of computers to do or assist complex human
tasks or reasoning. AI has many, broad sub-fields from pattern recognition to robot-
ics, and sophisticated planning and optimizations. Knowledge-based artificial intelli-
gence, or KBAI, is the use of large statistical or knowledge bases to inform feature se-
lection for  machine-based learning algorithms used in AI. Correctly expressed KBs
can support creating positive and negative training sets, promote feature set genera-
tion and expression, and generate reference standards for testing AI learners and
model parameters. The use of knowledge bases to train the features of AI algorithms
improves the accuracy, recall, and precision of these methods. These improvements
lead to better information queries, including for pattern recognition. Further, in a
virtuous circle, KBAI techniques can also be applied to identify additional possible
facts within the knowledge bases themselves, improving them further still for KBAI
purposes. Lastly, we hope that better ways to represent knowledge (with richer fea-
ture sets) may help unlock some of the black-box aspects typical of neural nets and
deep learning.

Knowledge-based artificial intelligence is not a new idea. Its roots  extend back
perhaps to one of the first AI applications, Dendral, more than a half-century ago in
1965.  Edward Feigenbaum initiated Dendral, which became a ten-year effort to de-
velop software to deduce the molecular structure of organic compounds using scien-
tific instrument data. Dendral was the first  expert system and set the outline for
knowledge-based systems, which are one or more computer programs that reason
and use knowledge bases to solve complex problems. Indeed, it was in the area of ex-
pert systems that AI first came to the attention of most enterprises. Expert systems
spawned the idea of  knowledge engineers, whose role was to interview and codify
the logic of the chosen experts. However, expert systems proved expensive to build
and difficult to maintain and tune.

The  specific  identification  of  ‘KBAI’  was  (to  my  knowledge)  first  made  in  a
Carnegie-Mellon University report to DARPA in 1975.7 The source knowledge bases
were broadly construed, including listings of hypotheses. The first known patent cit-
ing knowledge-based artificial intelligence is from 1992.8 Within the next ten years
there were dedicated graduate-level course offerings on KBAI at many universities,
including at least Indiana University, SUNY Buffalo, and Georgia Tech. In 2007, Bosse_
et al. devoted a chapter to KBAI in their book on information fusion, but still, at that
time, the references were more generic.9 However, by 2013, as a report by Hovy et al.
indicates, collaborative, semi-structured information stores such as Wikipedia were
assuming a prominent position in AI efforts.10 It has been the combination of KB + AI
that has led to the notable AI breakthroughs for knowledge purposes of the past, say,
decade. It  is in this combination that we gain the seeds for sowing AI benefits in
other areas, from tagging and disambiguation to the complete integration of text
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with conventional data systems. Further, the structure of all of these systems can be
made inherently multi-lingual, meaning that context and interpretation across lan-
guages can be brought to our understanding of concepts.

KBAI is part of the AI branch that includes knowledge-based systems. Besides
areas already mentioned, knowledge-based systems also include:

 Knowledge models   — formalisms for knowledge representation and reasoning;
and 

 Reasoning systems   — software that generates conclusions from available knowl-
edge using logical techniques such as deduction and induction. 

As  the  influence  of  expert  systems  waned,  another  branch  emerged,  that  of
knowledge-based engineering and their support for  CAD– and  CASE-type systems.
Still, we can charitably describe the overall penetration to date of most knowledge-
based systems as disappointing.

It is different today. Structured information and the means to query it now gives
us a powerful, virtuous circle whereby our knowledge bases can drive the feature se-
lection of AI algorithms, while those very same algorithms can help find still more
features and structure in our knowledge bases (see  Figure 4-2). Once we reach this
threshold of feature generation, we now have a virtuous dynamo for knowledge dis-
covery and management. We can use our AI techniques to refine and improve our
knowledge bases (the top loop of Figure 4-2), which then makes it easier to improve
our AI algorithms and incorporate  still  further  external  information (the bottom
loop).  Effectively  utilized  KBAI  (knowledge-based  artificial  intelligence)  thus  be-
comes a generator of new information and structure.

This virtuous circle has not been applied fully, seen mostly to date in the adding
of new facts to Wikipedia or Wikidata. Importantly, we can apply these same basic
techniques to the very infrastructural foundations of KBAI systems in such areas as
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data integration,  mapping to new external structure and information,  hypothesis
testing, diagnostics and predictions, and the myriad other uses to which researchers
for decades hoped AI would contribute. The virtuous circle between knowledge bases
and AIs does not require us to make leaps and bounds improvements in our core AI
algorithms. Instead, we need only stoke our existing AI engines with more structure
and knowledge fuel to keep the engine churning. 

KBAI has two  primary knowledge sources: recognized  knowledge bases, such as
Wikipedia, and statistical corpora. Knowledge bases are coherently organized infor-
mation with instance data for the concepts and relationships covered by the domain
at hand, all accessible in some manner electronically. Knowledge bases can extend
from the nearly global, such as Wikipedia, to particular topic-oriented ones, such as
restaurant reviews or animal guides. Some electronic knowledge bases are designed
explicitly to support digital consumption, with defined schema and standard data
formats and, increasingly,  APIs. Others may be electronically accessible and highly
relevant, but the data is hard to consume and requires extraction and processing be-
fore use. Hundreds of knowledge bases are suitable for artificial intelligence, most of
a restricted domain nature.9 Chapter 11 is devoted to this topic.

The use and role of statistical corpora are harder to describe. Statistical corpora
provide relationships or rankings to aid the processing of (mostly) textual informa-
tion. Uses can range from entity extraction to machine language translation.  Huge
sources, such as search engine indexes or massive crawls of the Web, are most often
the sources for these knowledge sets. The statistical corpora or databases have a pre-
cise focus. While lists of text corpora and many other things may contribute to this
category, the ones actually in commercial use are huge and designed for bespoke
functionality. A good example is the Web 1T 5-gram data set.12 This data set, contrib-
uted by Google for public use in 2006, contains English word n-grams and their ob-
served frequency counts. N-grams capture word tokens that often coincide with one
another, from single words to phrases. The length of the n-grams ranges from uni-
grams (single words)  to  five-grams. Google generated the database from approxi-
mately 1 trillion word tokens of text from publicly accessible Web pages.

Another example of statistical corpora is what Google’s Translate uses. According
to  Franz Josef Och, a former lead manager at Google for its translation activities, a
solid base for developing a usable language translation system for a new pair of lan-
guages should consist of a bilingual  text corpus of more than a million words, plus
two monolingual corpora each of more than a billion words. Statistical frequencies of
word associations form the basis of these reference sets. Google  initially seeded its
first language translators using multiple language texts from the United Nations.7 If
we add structure to statistical corpora, they may evolve to look more like a knowl-
edge base. NELL, for example, contains a relatively flat listing of assertions extracted
from the Web for various entities. NELL goes beyond frequency counts or relatedness
but does not have the full structure of a general knowledge base like Wikipedia.14 We
thus can see that statistical corpora and knowledge bases reside on a continuum of
structure, with no bright line to demark the two categories.

Created using both statistical techniques and results from machine learning, we
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are using these methods to extract massive datasets of entities, relationships, and
facts from the Web. Some of these efforts, like NELL, or its academic cousins such as
KnowItAll or Open IE (UWash), involve extractions from the open Web. Others, such
as the terabyte (TB) n-gram listings from Google, are derived from Web-scale pages
or  Google books.  Word, sentence or  graph vectors are other types. These examples
are but a sampling of various datasets and corpora available. These various statistical
datasets may be used directly for research on their own or may contribute to further
bootstrapping of still further-refined AI techniques. Similar datasets are aiding ad-
vertising placements and search term disambiguation. In some cases, while the full
datasets may not be available, open APIs may be available for areas such as  entity
identification or tabular data.

The Web is the reason these sources — both statistical corpora and knowledge
bases — have proliferated, so the dominant means of consuming them is via Web ser-
vices with the information defined and linked to IRIs. The availability of electroni-
cally accessible knowledge bases, exemplified and stimulated by Wikipedia, has been
the telling factor in recent artificial intelligence advances. For example, at least a
thousand different papers cite using Wikipedia for various natural language process-
ing,  artificial  intelligence,  or  knowledge  base  purposes.  These  papers  began  to
stream into conferences about 2005 to 2006, and have not abated since. In turn, re -
searchers are applying the various techniques innovated for extracting more and
more structure and information from Wikipedia to other semi-structured knowledge
bases,  resulting  in  a  renaissance  of  knowledge-based processing  for  AI  purposes.
These knowledge bases are emerging as the information substrate under many re-
cent computational advances, such as for virtual agents we command by voice. The
agents use  pattern recognition at the front and back end of the workflow based on
statistical datasets derived from phonemes and text. The agents apply  n  atural lan  -  
guage  processing,  as  informed by  knowledge  bases  and represented  by  semantic
technologies,  to the text  sandwiched between these bookends to conduct question
understanding and answer formulation.

This remarkable chain of processing is now almost taken for granted, though its
commercial use in virtual agents is fewer than ten years old. For different purposes
with different workflows, we see useful question answering and diagnosis with sys-
tems like  IBM’s  Watson15 and structured  search results  from Google’s  Knowledge
Graph.16 Try posing some questions to Wolfram Alpha and then stand back and be im-
pressed with the  data visualizatio  ns  .  Behind the scenes, pattern recognition from
faces to general images or thumbprints is further eroding the distinction between
man and machine. Google’s Knowledge Vault extends the Knowledge Graph using
probabilistic methods to add facts gleaned from the Web.17 Google Translate now ef-
fectively covers language translation between more than 100 human languages.18 All
major  Web  players  are  active  in  these  areas,  from  Amazon’s  recommendation
system19 to Facebook, Microsoft, Twitter or Baidu. Unfortunately, the sponsors re-
quired significant effort to re-organize and characterize the source knowledge bases
as coherent inputs to KBAI. All of the impressive advances we have seen to date in
distant  supervised  machine  learning  applications  result  from  bespoke,  manually
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trained efforts, repeated numerous times across providers. 
We  now  understand  how  content-rich  electronic  knowledge  bases  may  help

power machine learning for natural language understanding and information pro-
cessing. The usefulness is  apparent to re-express the KBs to maximize the features
available for machine learning, including disjointedness assertions to enable selec-
tion of positive and negative training sets. Specific aspects of the KBs, for which such
re-organization is appropriate, include concepts, types, entities, relations, events, at-
tributes, and statements. As we build these frameworks, they can facilitate mappings
to other knowledge structures, and aid in data interoperability and information inte-
gration. We may apply these same principles for building a general structure to new
domains or new knowledge bases. Three significant aspects — in machine learning,
knowledge supervision, and feature engineering — intersect to re-express knowledge
bases for KBAI purposes. Let’s investigate each in turn.

Machine Learning

Machine learning is the construction of algorithms that can learn from and make
predictions on data by building a model from example inputs. A wide variety of tech-
niques and algorithms may be employed — such as Markov chains, neural networks,
conditional random fields, Bayesian statistics, and many other   options   — that can be
characterized by many dimensions. Some are supervised, meaning we need to train
them against a standard labeled corpus to estimate parameters; others require little
or no training — that is, are unsupervised —  but may be less accurate as a result.
Some are statistical; others use pattern matching of various forms.  Supervised learn-
ing is  a  machine learning task of inferring a function from labeled training data,
which optimally consists of positive and negative training sets. The supervised learn-
ing algorithm analyzes the training data and produces an inferred function  that is
used to determine the correct class labels for unseen instances. In supervised learn-
ing, we present positive and (often) negative training examples to the learning algo-
rithm. Unsupervised learning is a different form of  machine learning, in that the ap-
proach attempts to find meaningful, hidden patterns without the use of labeled data.
We require no training examples in unsupervised learning. Supervised methods are
more accurate than unsupervised methods, and nearly universally so in the realm of
content information and knowledge. 

D  eep learning   is a recent trend to combine multiple techniques. In this approach,
the algorithm models the problem set as a layered hierarchy of distributed represen-
tations, with each layer using (often) neural network techniques for unsupervised
learning, followed by supervised feedback (often termed ‘back-propagation’) to fine-
tune parameters. While computationally slower than other techniques, this approach
has  the  advantage  of  automating  the  supervised  learning  phase  and  is  effective
across a range of AI applications. The major disadvantage is that deep learning cre-
ates ‘hidden’ statistical features within its intermediate layers; it is impossible to in-
terpret how the technique determines its final results. Deep learning is nonetheless
producing amazing results in recognizing images, audio, video or sensory percep-
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tion, and language translation. Effectiveness in knowledge areas has been less satis-
factory, with the lack of explanatory power a further detriment.

In supervised learning, the main drawback is the effort and expense associated
with labeling the positive or negative training examples (sets). The maximum effort
occurs from constructing the training sets entirely by hand. We can reduce the effort
by constructing them in a semi-automatic manner or by letting knowledge bases pro-
vide the labels. These techniques are known as semi-supervised, weak supervision, or
distant supervision.20 21 22 The accuracy of the eventual models is only as good as the
trueness of the input training sets, with traditionally the best results coming from
manually determined training sets. We call the most accurate of these sets ‘gold stan-
dards.’ The creation of manual training sets may consume as much as 80% of overall
machine learning efforts and is always a time-consuming task whenever employed. 

One way to help overcome the costs of developing manual training sets is by a
sub-class of supervised learning called  distant supervision, which is a method to use
knowledge bases to label entities or other types automatically in text, which is then
used to extract features and train a machine learning classifier. The knowledge bases
provide coherent positive training examples and avoid the high cost and effort of
manual labeling. When we use knowledge bases for distant supervision, we only use a
portion of the structure as features. Still, other distant supervision efforts may be
geared to other needs and use a different set of features. Indeed, broadly considered,
knowledge bases have a rich diversity of possible features. These potential features
arise from the text, and its content, syntax, semantics, and morphology; use vectors
of  co-occurring  terms  or  concepts;  categories;  conventions;  synonyms;  linkages;
mappings; relations; attributes; content placement within its knowledge graph; and,
disjointedness.  Appendix  C shows just how broadly diverse these types of features
may be.

State-of-the-art machine learning for natural language processing and semantics
uses distant supervision and knowledge bases like Freebase23 or Wikipedia to extract
training sets for supervised learning. We can create relatively clean positive and neg-
ative training sets with much-reduced effort over manually created ones. However,
as employed to date, distant supervision has mostly been a case-by-case, problem-by-
problem approach, and most often applied to entity or relation extraction. The effort
has heretofore not been systematic in approach nor purposefully applied across a
range of ML applications. How to structure and use knowledge bases across a range
of  machine learning applications with maximum accuracy and minimum effort  is
what we call knowledge supervision, which I discuss more in a moment.

Besides supervised and unsupervised learning, a third broad category of machine
learning is  reinforcement learning. Unlike the first two categories where prior exam-
ples are used to learn a statistical prediction for new cases, reinforcement learning
focuses on the learning process itself.  Reinforcement learning is an active, iterative
process where rewards associated with a given set of objectives are used to select
from and optimize next actions. “Although one might be tempted to think of rein-
forcement learning as a kind of unsupervised learning because it does not rely on ex-
amples of correct behavior, reinforcement learning is trying to maximize a reward
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signal instead of trying to find hidden structure.”24 Because we have not heretofore
linked knowledge bases with models of action, we have limited our use of KBs to
static questions and applications. Insofar as we may be able to stage and embed our
knowledge bases into a true action model, a topic of Chapters 7 and 16, we may be able
to see them inform models of reinforcement learning as well.

Knowledge Supervision 

Whatever the combination of method, feature set, or training sets, the ultimate
precision and accuracy of the machine learning requires the utmost degree of true
results in both positive and negative training sets. Training to inaccurate informa-
tion merely perpetuates inaccurate information. As anyone who has worked exten-
sively with source knowledge bases may attest, assignment errors and incomplete
typing and characterizations are all  too  familiar. Further, few existing knowledge
bases provide disjointedness assertions. Though early efforts in artificial intelligence
understood that capturing and modeling common sense was both an essential and
surprisingly tricky task — the impetus, for example, behind the thirty-year attempt
of the Cyc knowledge base — what is new in today’s circumstance is how these mas-
sive knowledge bases can inform and guide symbolic computing. The literally thou-
sand research papers regarding the use of Wikipedia data alone shows how these
massive knowledge bases are providing base knowledge around which AI algorithms
can work. Unlike the early years of mostly algorithms and rules, AI has now evolved
to explicitly embrace Web-scale content and data and the statistics that we may de-
rive from global corpora.

The innovation of distant supervision has been to leverage knowledge bases to
overcome the costs of labeling data and creating positive and negative training sets
for supervised learning. Wikipedia, as noted, has been leveraged for these purposes
by such players  as  IBM, Google,  Facebook, Baidu,  Microsoft,  Amazon,  and others.
However, each of these players has done their own massaging of Wikipedia from
scratch to support these purposes. None of this is free. Much purposeful work is nec-
essary to configure and stage the data structures and systems that support the broad
application of distant supervision. The idea of knowledge supervision, our third compo-
nent to KBAI along with feature engineering and machine learning, is to take distant
supervision one step further.

To  achieve  these  aims  for  knowledge  supervision,  we  purposefully  stage  our
source knowledge bases. We structure the KBs to maximize information extraction of
concepts, entities, relations, attributes, and events because we have provided such
structure in the central knowledge graph of KBpedia. We use these structures for
linking and mapping to still additional knowledge sources. We support this entire
process with methods for codifying self-learning such that our systems continue to
get more accurate. We test continuously to improve the assignments and the accu-
racy of the system.
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 Attribute ‘slot filling’ 
 Bespoke analysis 
 Bespoke platforms
 Classifiers   

◦ Concept tagging
◦ Document categorization  
◦ Entity classifiers 

 Cluster analysis  
◦ Concept clustering  
◦ Data clustering 

 Cognitive computing 
 Converters

◦ Data conversion  
◦ Format converters

 Disambiguators 
◦ Word sense disambiguation  

 Duplicates removal 
 Entity dictionaries

◦ Gazetteers     
 Information extraction  

◦ Attribute extractors 
◦ Entity recognizers   
◦ Event extractors
◦ Relation extractors
◦ Sub-graph extraction 

 Knowledge base improvements 
 Knowledge base population
 Machine learning  

◦ Deep learning  
◦ Distant supervision
◦ Knowledge supervision
◦ Supervised learning  
◦ Reinforcement learning  
◦ Unsupervised learning  

 Mapping 
◦ Data mapping   
◦ Knowledge base   mapping   
◦ Ontology mapping

 Master data management   
 Natural language processing  

◦ Artificial writing 
◦ Autocompletion   
◦ Entity   link  ing   
◦ Language translation  
◦ Multi-language versions 
◦ Phrase (n-gram) identification
◦ Speech recognition  
◦ Speech synthesis  
◦ Spell correction  
◦ Text generation   
◦ Text summarization   

 Ontologies
◦ Ontology development 
◦ Ontology matchers   
◦ Ontology mappers

 Pattern recognition  1

◦ Computer vision  
◦ Facial recognition  
◦ Image recognition  
◦ Optical character recognition  

 Reasoning  
◦ Inferencing   
◦ Question answering  
◦ Recommendation systems  
◦ Semantic relatedness analysis  
◦ Sentiment analysis  

 Search and information retrieval   
 Semantic publishing  

Table 4-1: Knowledge-based AI Applications

Table 4-1 provides a listing of some of those areas to which knowledge supervi-
sion may apply; some already use distant supervision or have been shown useful
in academic research, others we have not yet exploited. 

Knowledge supervision is thus the purposeful structuring and use of knowledge
bases to provide features and training sets for multiple kinds of machine learners
that we may apply to multiple artificial intelligence outcomes. While distant super-
vision also uses knowledge bases, it does so passively, taking the knowledge bases
as is,  rather than re-expressing them in a purposeful,  directed manner across
multiple  machine  learning  problems.  Knowledge  supervision  is  thus  the  better
method to achieve KBAI. 

1 Not a knowledge supervision ML option.28
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Feature Engineering

Feature engineering is the process of creating, generating and selecting the features
used in machine learning, based on an  understanding of the underlying data and
choosing ones likely to impact learning results and effectiveness. A feature is a mea-
surable property of the analyzed system. A feature is equivalent to what statistics
calls an explanatory variable. The ML algorithms tend to favor features with high ex-
planatory power independent of other features (that is, they are orthogonal) because
each added feature adds a computational cost. Many features correlate with one an-
other; in these cases, we need to find the strongest signals and exclude the other cor-
relates. Tuning and refinement are also more difficult with too many features, what
has  sometimes  been  called  the  curse  of  dimensionality.  Overfitting by  using  too
many features is also often a problem, which limits the ability of the model to gener-
alize to other data. Still,  using too few features results in inadequate explanatory
power.

Features and training sets are the major determinants of how successful the ma-
chine learning is. Training sets are a set of data used to discover potentially predictive
relationships. In supervised learning, a positive training set provides data that meet
the training objectives; a negative training set fails to meet the objectives. Features
also pose trade-offs and require skill in selection and use. Though it is hard to find a
discussion of best practices in feature extraction, many practitioners note that strik-
ing this  balance is  an art.25 We might  also need multiple  learners to  capture the
smallest,  independent  (non-correlated)  feature  set  with  the  highest  explanatory
power.26

An understanding of  what features are possible within knowledge bases is  the
first hurdle toward more purposeful knowledge supervision. We stage the structured
information as RDF triples and OWL ontologies, which we can select and manipulate
via APIs and SPARQL. We also stage the graph structure and text with the support of
a search engine,27 which gives us powerful faceted search and other advanced NLP
manipulations and analyses. These same features may also be utilized to extend the
features set available from the knowledge base through such actions as  extracting
new entities, attributes, or  relations; fine-grained entity typing;28 creation of word
vectors or tensors; results of graph analytics; forward or backward chaining; and effi-
cient processing structures. Appendix C overviews the features available to KBAI from
the KBpedia knowledge structure.

Because all features are selectable via either structured SPARQL query or faceted
search, it is also possible to more automatically extract positive and negative train-
ing sets. Attention to proper coverage and testing of disjointedness assertions is an-
other purposeful step useful to knowledge supervision since it aids identification of
negative examples for the training. We get into such operational details in Chapters
12 to 14.

These opportunities do not exhaust those available from applying Peircean guide-
lines to knowledge representation, backed by knowledge bases. However, knowledge
management, data interoperability, and knowledge-based AI form the leading edge
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of promising new capabilities.
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