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POTENTIAL USES IN DEPTH

nformation, Peirce tells us, is like a spatial function covering the complete area
of a topic. We have just covered a dozen topics in breadth regarding the potential

of Peircean ideas to the subjects of knowledge and its representation. Now, let’s turn
our attention to the treatment of three additional topics, only now in  depth. These
three new topics are not as speculative as some from the prior chapter. I have chosen
them based on highest impact, near-term potentials. The three areas are workflows
and business process management (BPM), semantic parsing, and applications and in-
teractions in robotics. The challenge in all three areas is to automate as much as pos-
sible while leaving to the knowledge worker what is uniquely human. For space rea-
sons, I shorten the two bookends to allow a fuller treatment of the middle case.

I

WORKFLOWS AND BPM

Business processes and their management is the most neglected area of business.
Business process management, or BPM, is about how businesses identify, select, im-
plement, and refine their bases of production, and the actions to perform them. BPM
embraces two kinds of knowledge: that needed to do a task, and the knowledge of
what to do when a process goes off track. BPM is the action side of the business, anal-
ogous to the things of business, which is what KM manages.1 Indeed, in this very man-
ner of verb-noun, we see similar failings and lack of attention for BPM as we see for
knowledge management.2 It is telling that service-oriented, knowledge-based busi-
nesses still do not see that the fundamental basis of their products is knowledge. At-
tending to the production and consumption of knowledge warrants as much atten-
tion to efficiencies as do the actions or processes on the factory floor. 

We first touched upon the subject of content workflows in Chapter 12. Here, I give

1 BPM may also refer to business process modeling. We retain the management sense here, noting the model-
ing part only comes after thinking through the management portion.

2 The exception to this observation is advanced manufacturing. Some of these businesses, inherently action-
oriented, have pioneered BPM’s related cousin of manufacturing process management. However, it is an 
open question whether manufacturing businesses are better at KM as well.
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better detail to these flows and argue that knowledge management itself deserves
business process management. Ideas in Peirce and KBpedia enable us to better repre-
sent actions and events,  critical  aspects of workflow. We will see real differences
from BPM once we learn how to incorporate it into our actual, daily workflows.

 We may group BPM activities in many ways but, fundamentally, they represent
how to  satisfice multiple business  objectives,  not always in concert.  The goals  of
profit and public service, for example, are not weighed equally by companies and
non-profit institutions. A business process initiative should consider a scope that at
least includes:

1. A logical conceptual model of process and terminology for the business process
agreed by the user community of workers and managers;

2. An agreed design and implementation plan; 

3. Technology support to implement that system; 

4. How users and administrators interact with the system, including user inter-
faces and approval steps and actions; and 

5. Agreed and documented process and governance. 

Initiatives require both semantic technologies and management commitment. 
Today, however, we are not even at the preliminaries. For the majority of compa -

nies,  agreed workflow procedures for business processes or operational workflow
management systems do not exist. Gaps arise because BPM deals with abstract pro-
cesses and intimately involves people, work practices, and management. Workflows
cut across organizational boundaries and thus need to be attentive to terminology
and semantics. To raise the question of ‘what is your workflow?’ is to disrupt the
workflow of your standard knowledge worker. Many BPM efforts are bass-ackwards.
We do not need a separate application upon which to focus our ‘workflow’ attention.
We need workflow considerations rooted in how we currently work. While it is OK to
disrupt the knowledge worker for a short period to help understand their implicit
workflows, it is not OK to put in place BPM systems that divert knowledge workers
from their standard work.

Semantic technologies are essential to the task because shared communication is
at the heart of workflow management. Semantic business process management has
been a steady research interest over the past 15 years or so (see Heppe et al. for one
of the seminal early papers1). One theme is the potential role of ontologies in BPM.2

Through this work we learn the imperative of incorporating ‘action’ in our ontolo-
gies and the need to handle branching and merging in evolving workflows. Unfortu-
nately, however, besides some notable research initiatives from Europe, we have not
seen broad commercial success for semantic BPM.

Concepts and Definitions

We focus on digital  c  ontent   in the context of BPM for knowledge work,  which
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refers  to all documents, datasets, records within them, the ontologies used by the
system, and internal control vocabularies and structures. A content lifecycle embraces
all content stages and workflow steps within those stages, from inception to use. In
its entirety, we capture a content lifecycle by the complete controlled vocabulary and
sequencing of all stages and steps. A content stage is a broader concept than workflow
step and represents a state within the content lifecycle ranging from experimental to
working to archived. Figure 12-2 is one example of various content stages.

A state is an instantiation of a workflow step that represents a change in content
or an evaluation of it. (For example, a manager approving the release of content even
without making any changes to the actual content.) An event is an occurrence that
causes a change in state. A w  orkflow   is a sequence of connected steps representing a
business activity where each step follows without delay or gap and ends just before
the next subsequent step may begin. A workflow step is a discrete step in a workflow
that has  an explicit  label,  where the general  progression proceeds  from creation
through editing and review to approvals. Workflow step is a narrower concept than
content stage within a content lifecycle. We organize workflows around discrete and
definable business objectives such as authoring, harvesting (ingest), archiving, and
the like. Upon completion of various workflows, we may deem the content ready for
different stages in a content lifecycle. In an authoring workflow, for example, new
content may proceed from creation to editing to completion of tagging and then re-
view  (with  potential  approval).  Approval  of  authored  content  thus  represents  a
change in the content stage from working to readiness for public release and use. 

We can thus see the ‘stages’ of a content lifecycle as a broader organizing frame-
work than the individual ‘steps’ of the workflows we embed within these content
stages. All workflows, though individual steps may differ, share the basic conceptual
progression of drafting or creation proceeding through editing or modification and
then to testing and review before acceptance for public use or readiness. Because of
these conceptual similarities, we can develop and share controlled vocabularies to
represent these progressions across workflows, preferably using consistent terminol-
ogy we draw from actual work practice.

We need to intimately relate these stages and steps to governance and quality
control. We introduce known checks, reviews, and sign-offs into the workflow to en-
sure releases meet the organization's quality standards. ‘Business processes’ are the
combination of an orderly progression in workflows with governance. By adopting
such BPM practices, we help ensure the repeatability and generalizability of our or-
ganizational efforts. 

Providers have developed workflow engin  es   to keep these specifications persistent
and to execute some of them, incorporating the various decision rules and triggers
that  enable  the  progression  to  proceed  step-by-step  through the  workflows.  The
workflow engine is a software application that manages and executes modeled com-
puter processes, and thus provides a coherent and standard way for specifying vari-
ous business workflows and then executing them depending on the governance and
quality checks desired by the organization. We may base events or triggers for mov-
ing from state to state within the progression on user or manual review, timing or
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duration checks, applications of scripts or automated tests, and the like.  Workflow
management is the collection of processes and governance by which we oversee the
entire content lifecycle, including guidance for how steps progress across the cycle
and how we conduct reviews and approvals. 

We  may  represent  these  steps  and  activities  with  controlled  vocabularies  or
graphic notations. BPEL (business process execution language) was the leading stan-
dard  in  the  early  days  of  service-oriented  architectures.  Today,  BPMN (business
process model and notation) is the leading approach whereby we use graphical edi-
tors to create visual workflows that generate XML instructions to the workflow en-
gine. Optionally, we may represent the individual steps in a workflow process using a
work breakdown structure (WBS), a management approach used for many decades.

The BPM Process

The business process management (BPM) cycle should begin with a l  ogical    m  odel  ,
starting, in the case of KM, from the viewpoint of content lifecycle and work stages.
We should involve creators and users of the content, especially including responsible
managers, in agreeing to the major stages and terminology of this model, as well as
transition and decision points for state changes. We need to inspect and define spe-
cific stages of this cycle; adding steps to the process requires consultation with the
stakeholders. The products of this part of the cycle are the initial controlled vocabu-
laries and representations of content stages, similar to what we show in Figure 12-2.
The result of this process creates the ‘backbone’ to the overall BPM effort.

We then need to express this logical model and its controlled vocabulary and ter-
minology in an ontology to take advantage of semantic technologies. The stages and
steps naturally lend themselves to class specifications. Review and approval levels
become properties, all again governed by the agreed common vocabularies. At this
juncture,  we  advise  to  discuss  and  decide  upon  required  or  optional  annotation
guidelines and metadata for events and state transitions. Noting the name of the ap-
proving employee and timestamps are a couple of standard fields. Rejection or re-re-
view steps may warrant more elaborate notes. Some of these annotation standards
may require input from legal counsel or be attentive to the regulatory requirements
of the business.

It is important to balance current terminology in use with consistency across the
full business process for:

 Content lifecycle stages; 
 Workflow steps;
 Events; 
 Actors (agents) and roles; and
 Transitions and alerts. 

We must update the logical model and ontologies to reflect any changes to the con-
ceptual model. The net result should be an updated workflow model in specification
form that uses consistent terminology. This model will now become the baseline for
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workflows moving forward, which we may further refine or update or use as tem-
plates for other workflows as needed. 

We configure the workflow engine in parallel to this effort. The major aim is to
add the workflow logic and business rules, in addition to the install and configura-
tion parameters. Many proprietary and open source workflow engines exist for both
BPEL and BPMN, though choosing the right one is a complicated task involving a
panoply of  anticipated functions  and the types  of  integration desired with  other
tools (such as graphical changes to a BPMN specification flowing through to the en-
gine). As noted earlier, we have seen semantic integrations in research projects, but
we appear to lack turnkey off-the-shelf systems that incorporate semantics. Aside
from the need to integrate a workflow engine, prior chapters provide the guidelines
for one.

Optimal Approaches and Outcomes

One has to wonder about the relatively low uptake of BPM for knowledge manage-
ment functions. I think we can point to two reasons for this lack. First, as we dis-
cussed for the lack of use of information and knowledge in  Chapter 3, managers do
not have a  bred-in-the-bones belief in the importance of process and workflows in
knowledge management. Somehow we know we are involved with important tasks of
discovery and pursuit of knowledge, but we do not understand these are purposeful
and refinable activities. Second, I think the implementation of BPM has been bass-
ackwards. Business process or workflows are not applications; they are an articula-
tion of what we do. Recording or changing workflows must occur at the point of
work, not in a separate app. A workflow system that gets used must be unobtrusive
and linked to the content work at hand. This point-of-action imperative means we
should split the BPM functions into atomic operations distributed across current ap-
plications, all governed by consensual workflows and terminology.

We need to embed state transitions and state designation changes into existing
workflow screens. We need to look to our major content platforms (word processors,
spreadsheets, content management systems, and the like) and find where we can em-
bed simple workflow-related functionality. Some of this may be as simple as record-
ing  state  transitions;  others  might  be  specific  tabs  or  operations.  Plug-ins  are  a
proven  model  and can  emit  simple  data  structs  recording  their  actions,  invoked
manually or automatically depending, to a REST-ful Web service linked with the con-
tent ontology. From a UI perspective, this should be done consistently in context
with the host tool for all workflows. Some of these activities, such as editing or man-
aging ontologies (knowledge graphs), tagging content, mapping content, or further
refining terminology and semantics, are new tasks and not merely state changes of
current tasks. These functions become a bit more complicated Web services, as we
discussed in Chapter 12.

Based on today’s standards, it would be wise to link our ontology design to some
form of meta-model that would enable us to talk directly with BPMN. This notation
covers the range of known and anticipated BPM and workflow activities and states.
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Third-party tools allow users and analysts to inspect and modify workflows graphi-
cally and to emit their specifications in canonical forms.3 A good design would let
users and analysts examine and refine workflows directly.

What we are seeking is a framework and workflow that naturally allows us to
present all existing and new content through a pipeline that extends from authoring
and review to metadata assignments. Making final assignments for subject tags from
the candidates and then ensuring we correctly assign all other metadata may be ei-
ther eased or impeded by the actual workflows and interfaces.  The trick to  such
semi-automatic processes is to get these steps right. Analysts need manual overrides
when suggested candidate tags are not right. Sometimes new terms and entries are
found when reviewing the processed content;  these need to be entered and then
placed  into  the  overall  knowledge  graph  as  discovered.  The  process  of  working
through steps on the tag processing screens should be natural and logical. Some ac-
tivities benefit  from very focused,  bespoke functionality, rather than calling up a
complicated or comprehensive app.

In business settings these steps need to be recorded, subject to reviews and ap-
provals, and with auditing capabilities should anything go awry. Potential revision
means there needs to be a workflow engine underneath the entire system, recording
steps and approvals and enabling things to be picked up at any intermediate, sus-
pended point.  These support requirements tend to be unique to each enterprise.
Thus, we favor an underlying workflow system that can be readily modified and tai-
lored — perhaps through scripting or configuration interfaces. We also want version
control systems for our knowledge graphs so that we may record, compare, and roll-
back changes as required.

Respect for workflows is also a first principle, expressed in two different ways.
The first way is that we should not unduly disrupt existing workflows when intro-
ducing interoperability improvements. While workflows can — and should — be im-
proved or streamlined over time, initial introduction and acceptance of new tools
and practices must fit with existing ways of doing tasks to see adoption. Workers re-
sist jarring changes to their existing work practices. The second way that workflows
should be respected is the importance of being aware of, explicitly modeling, and
then codifying how we do tasks. This focus becomes the ‘language’ of our work and
helps define the tooling points or points of interaction as we merge activities from
multiple  disciplines  in  our  domain.  These  workflow  understandings  also  help  us
identify useful points for APIs in our overall interoperability architecture. These con-
siderations provide the rationale for assigning metadata to characterize our informa-
tion objects and structure, based on controlled vocabularies and relationships as es-
tablished by domain and administrative ontologies.

Peirce’s guidelines and KBpedia provide some unique strengths to a BPM initia-
tive. Events, states, roles, and actions are well-characterized and structured. We have
repeatedly seen the semantic technology influence in KBpedia, an essential perspec-
tive  for  capturing  consensus  and  terminology  related  to  business  processes  and
workflows. We have put forward a ‘pay-as-you-benefit’ strategy for incremental test-
ing and adoption of new scope and functionality, an approach that also fits well with
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implementing what may prove to be a broad, or business-wide, BPM implementation
plan.  Moreover, from an architectural standpoint, we have put forward a WOA de-
sign that supports atomic and distributed functionality interacting via Web services,
the only approach that makes logical sense for a workflow management system.

An effective BPM system would bring tangible benefits in three ways. The first is
that for us to gain efficiencies by climbing the learning curve, we must have a docu-
mented business process that we can repeat and refine. The second benefit is that we
gain a basis for learning about learning. Today, knowledge gets produced. Still, we
have little insight into how to do it  nor how we can do it  better.  The third  and
longer-term benefit is that with a better understanding of states, actions, and events,
we provide a possible entry point into real-time knowledge supervision. Processes
are a Thirdness, and mediation is a dynamic process of what exists and how chance
and change may affect it.

SEMANTIC PARSING

Parsing is the identification and segregation of string symbols into the constructs
of a formal grammar.1 A  formal grammar is a set of rules for how to process these
symbols, often including defined classes (lexemes) to which the processed symbols
may be assigned, the aggregate of which is called the lexicon. The processing of text
is like Pac-Man chewing through tokens in either left-right or right-left directions,
top-down or bottom-up, by character, word or phrase, deciding at each token how to
transform it  or  terminate.  The  parser  might  be  simple,  perhaps  relying  only  on
heuristics or  regular expressions and seeking only to define token boundaries. The
parser might be quite sophisticated and based on machine learning of the optimal
methods and parameters to parse domain content for specific domain purposes.

Different NLP methods may benefit from different parsers or grammars. Some
output from the parse such as tables, trees, or vectors may be suitable for different
purposes or content. The tree structure, for example, is a proven storage structure
for parsed documents and Web pages. Some  parser generators can also effectively
operate in ‘reverse,’ in which case they may perform as compilers (for computer lan-
guages) or syntax or grammar checkers (for languages) or theorem provers (if logic
based). Thus, much research is potentially transferrable among disciplines.2 

Lexical analysis is often the first stage of parsing, wherein the system ‘chunks’ or
tokenizes the string into lexical units. For natural language understanding, the lexi-
cal constructs are parts-of-speech, word senses, sentence structure (syntax), and the
like. These constructs intimately link to the formal grammar. Parsers need to se-
quence the string in specific ways and often rely on recursion to keep the algorithm
simpler and better performing. The recursion method may thus impose other re-
quirements on chunking order or storage or perhaps add pre- or post-processing

1 The word grammar is derived from a Greek word meaning ‘writing,’ though at one time the knowledge of 
Latin grammar was viewed as endowing one with magical power, from which arose our word glamour.4

2 In many areas of computational linguistics, care should be taken when comparing findings from the con-
tributing disciplines. 
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steps.  We may impose simplifications or feature reductions to  keep the language
analysis decidable or have it complete in acceptable time. Circumstances of use may
also  require  us  to  attend  to  other  tasks  during  the  parse  steps,  including
normalization,  word  forms,  word  segmentation,  stemming,  case  adjustments,
lemmatization, or sentence detection (end, beginning).

Formal grammars have different degrees of expressiveness. Once we process a
natural language into a formal grammar, its reverse translation may not retain the
same expressiveness, making the grammar ‘lossy.’ We may choose to accept some
loss, since capturing the full expressiveness of natural language may require larger
and more complicated formal grammars with weaker performance and greater stor-
age.5 Parsing and their accompanying grammars are the keys to  n  atural language  
understanding. Peirce has much to offer in these areas, though toolmakers have yet
to exploit parsers and grammars based on Peircean principles to any real degree.

A Taxonomy of Grammars

At the  syntax  level,  we can classify  grammars  into  phrase  structure  (or  con-
stituency)  ones  and  dependency  ones.6 The guiding  idea  behind  constituency
grammars is that groups of words may act as a single unit, such as a noun-phrase
(NP) or verb phrase (VP). Dependency parsing can express word dependencies (such
as some semantic relationships) and is getting more attention because of its suitabil-
ity to some forms of machine learning. Dependency parsing works well for natural
languages that have free word orders (e.g., Turkish, Czech). Dependency parsing can
also be used to generate treebanks, which have become popular reference structures
for use by tokenizers  or text  annotators.  Example dependency grammars include
word grammar, fu  nctional generative description  , and link grammar.1 However, the
more common parsers use constituency grammars.

A formal grammar provides a set of transition rules for evaluating tokens and a
lexicon of types that can build up, or generate, representative language structures.
The  tokens  are  either  terminal  or  symbolic,  with  the  terminal  ones  causing  the
process to continue to the next token or to stop entirely. Formal grammars act like
abstract  machines (or  automata).  Automata  theory,  the  basis  of  finite-state
machines, is also closely related in that an automaton is a finite representation of a
formal language that may be an infinite set. Grammar with a larger lexicon of types
or more sophisticated steps encourages more straightforward representations and
better generalizations, including recursion, to reduce evaluation times. 

Categorial  grammar,  a  constituency  grammar  derived  from  the  simply  typed
lambda  calculus,  is  based  on  types  and  is  built  according  to  the  principle  of
compositionality, wherein we understand complex expressions from the meaning of
their components and the rules (grammar) of their construction. This grammar is a
phrase-structure grammar, better known as a context-free grammar, in which a ter-
minating symbol never appears on the left-hand side of a transformation step. Con-

1 Nivre argues that a dependency grammar is not a grammar formalism, rather a specific way to describe the 
syntactic structure of a sentence.7
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text-free languages are the theoretical basis for the syntax of most  programming
languages.

Since formal grammars are a branch of formal language, we can draw upon a rich
mathematics literature of theory, constructs, and algorithms. In the 1960s, theoreti-
cal research in computer science on regular expressions and finite automata led to
the  discovery  that  context-free  grammars  are  equivalent  to  nondeterministic
pushdown automata.8 This discovery led to the interaction of formal grammars with
compiler  construction.  It  also  led  to  the  design  of  de  terministic  context-free  
grammars that  could  be  parsed  sequentially  by  a  deterministic  pushdown
automaton, a requirement in early programming language designs due to computer
memory constraints. 

Noam    Chomsky   was  the  first  to  formalize  the  idea  of  the  hierarchical  con-
stituency with a phrase-structure grammar in 1956, which he proceeded to expand
upon and develop over the ensuing decades, called  the  Chomsky hierarchy,9 which
splits into four types. Deterministic context-free grammars (DCFGs), an intermediate
grammar in the Chomsky hierarchy, are a proper subset of the context-free gram-
mars, which can derive from deterministic pushdown automata. As benefits, we can
parse DCFGs in linear time, and a parser generator can automatically generate them. 

For natural languages, practitioners favor context-free grammars, another inter-
mediate type in the Chomsky hierarchy. Here is a sampling of the methods or gram-
mars that have emerged from context-free grammars (CFGs): 

 Affix grammar  ,
 Attribute grammar  ,
 Categorial grammar  ,
 CYK algorithm  ,
 Earley algorithm  , 
 Generalized context-free grammar  ,
 Generalized phrase structure grammar  ,
 Head-driven phrase structure grammar  ,
 ID/PL grammar  ,
 GLR parser  , 
 Lambek calculus  ,4

 Lexical functional grammar  ,
 LL parser  ,
 Minimum recursion semantics  ,
 Parsing expression grammar  , 
 Pregroup grammar  ,
 Phrase-structure grammar  , and
 Stochastic context-free grammar  .

Categorial grammars create fixed lexicons that assign a category (type) to each
symbol and inference rules for what type of symbol follows, sufficient to specify a
particular language grammar. The CYK algorithm is widely taught and implemented

333

https://en.wikipedia.org/wiki/CYK_algorithm
https://en.wikipedia.org/wiki/Stochastic_context-free_grammar
https://en.wikipedia.org/wiki/Phrase_structure_grammar
https://en.wikipedia.org/wiki/Pregroup_grammar
https://en.wikipedia.org/wiki/Parsing_expression_grammar
https://en.wikipedia.org/wiki/Minimal_recursion_semantics
https://en.wikipedia.org/wiki/LL_parser
https://en.wikipedia.org/wiki/Lexical_functional_grammar
https://en.wikipedia.org/wiki/Categorial_grammar#Lambek_calculus
https://en.wikipedia.org/wiki/GLR_parser
https://en.wikipedia.org/wiki/ID/LP_grammar
https://en.wikipedia.org/wiki/Head-driven_phrase_structure_grammar
https://en.wikipedia.org/wiki/Generalized_phrase_structure_grammar
https://en.wikipedia.org/wiki/Generalized_context-free_grammar
https://en.wikipedia.org/wiki/Earley_algorithm
https://en.wikipedia.org/wiki/CYK_algorithm
https://en.wikipedia.org/wiki/Categorial_grammar
https://en.wikipedia.org/wiki/Attribute_grammar
https://en.wikipedia.org/wiki/Affix_grammar
https://en.wikipedia.org/wiki/Deterministic_context-free_grammar
https://en.wikipedia.org/wiki/Chomsky_hierarchy
https://en.wikipedia.org/wiki/Noam_Chomsky
https://en.wikipedia.org/wiki/Noam_Chomsky
https://en.wikipedia.org/wiki/Deterministic_pushdown_automaton
https://en.wikipedia.org/wiki/Deterministic_pushdown_automaton
https://en.wikipedia.org/wiki/Deterministic_context-free_grammar
https://en.wikipedia.org/wiki/Deterministic_context-free_grammar
https://en.wikipedia.org/wiki/Deterministic_context-free_grammar
https://en.wikipedia.org/wiki/Pushdown_automaton
https://en.wikipedia.org/wiki/Formal_language
https://en.wikipedia.org/wiki/Programming_languages
https://en.wikipedia.org/wiki/Programming_languages


A KNOWLEDGE REPRESENTATION PRACTIONARY

and is a good basis for understanding context-free grammar aspects.10 Head-driven
phrase structure grammar (HPSG) marks entries with a hierarchy of types. As more
rules get added to HPSG, the approach takes on the form of what researchers call a
construction grammar. Minimal recursion semantics is a meta-level language for de-
scribing semantic structures in a typed formalism that the authors claim is an easy
way to decompose,  relate and compare semantic  structures.11 In phrase-structure
grammars feature sets are attribute-value pairs, where the value may be single, mul-
tiple, or complex, including lists, sets, or functions.1 Another nice aspect of a feature
structure is that we can represent them as a directed acyclic graph (DAG), with the
nodes corresponding to the variable values and the paths to the variable names. Fur-
ther, we can effectively transform every context-free grammar (CFG) into a  weakly
equivalent one without unreachable symbols (unprocessed tokens in the string). 

Researchers strive to find a sufficiently expressive grammar, perhaps with some
heuristics for rare edge cases, to capture and re-write back natural language suffi-
cient for effective communication. It is clear that some features of languages are not
context-free. It turns out, as Joshi showed for some leading-edge grammars, that we
need only capture partial aspects of context-sensitivity to obtain sufficient expres-
sivity, what he classed as mildly context-sensitive grammars. Here are some promi-
nent options:

 Combinatory categorial grammar  ,
 Embedded pushdown automaton  ,
 Head grammar  ,
 Linear-indexed grammar  , and
 Tree-adjoining grammar  .

We may associate the elements of combinatory categorial grammar (CCG, which is
grounded in  combinatory logic), such as verbs or common nouns, with a syntactic
‘category’ that has a function with specified arguments and a type of result.12 CCGs
combine descriptive adequacy — that is, applicability to the constructions and inter-
pretations of a wide range of diverse languages — with explanatory adequacy, in the
sense of having the fewest expressions to obtain an adequate level of theoretical lin-
guistic competence. This level of ‘mildly context-sensitive grammars’ is the current
‘sweet spot’ within the Chomsky hierarchy for trading off performance with expres-
siveness. The generalized linear context-free rewriting system has proven an enabler
for formulating and testing new grammars at this leading edge of performance.

Not all formal grammars are generative, either. Constraint grammars are entirely
rule-based, often embracing hundreds of rules. Constraint-based grammars state the
rules that are disallowed, with many acting as constraint analogs to standard genera-
tive models. Functional theories of   grammar   try to model the way language is used in
communications under the assumption that formal relations between linguistic ele-
ments are functionally motivated. 

1 We talked of this simple data struct in Chapter 9.

334

https://en.wikipedia.org/wiki/Functional_theories_of_grammar
https://en.wikipedia.org/wiki/Functional_theories_of_grammar
https://en.wikipedia.org/wiki/Constraint-based_grammar
https://en.wikipedia.org/wiki/Constraint_grammar
https://en.wikipedia.org/wiki/Linear_context-free_rewriting_system
https://en.wikipedia.org/wiki/Combinatory_logic
https://en.wikipedia.org/wiki/Tree-adjoining_grammar
https://en.wikipedia.org/wiki/Linear_indexed_grammar
https://en.wikipedia.org/wiki/Head_grammar
https://en.wikipedia.org/wiki/Embedded_pushdown_automaton
https://en.wikipedia.org/wiki/Combinatory_categorial_grammar
https://en.wikipedia.org/wiki/Mildly_context-sensitive_grammar_formalism
https://en.wikipedia.org/wiki/Weak_equivalence_(formal_languages)
https://en.wikipedia.org/wiki/Weak_equivalence_(formal_languages)
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Attribute%E2%80%93value_pair
https://en.wikipedia.org/wiki/Feature_structure
https://en.wikipedia.org/wiki/Minimal_recursion_semantics
https://en.wikipedia.org/wiki/Construction_grammar
https://en.wikipedia.org/wiki/Head-driven_phrase_structure_grammar


POTENTIAL USES IN DEPTH

Computational Semantics

So, we now have a broad view of the mechanics of formal grammars and parsing,
but what about the meaning of language, its semantics? We can see the processing
rules and approach; we still need to understand the semantics of the chunks involved
and their contribution to a representation of meaning.  Computational    s  emantics   is
the  study  of  how  to  automate  the  process  of  constructing  and  reasoning  with
meaning representations of natural language expressions.13 Semantic parsing breaks
natural language into logical forms14 — that is, an unambiguous artificial language —
with the logic intended to express the meaning of the language components.1 Shal-
low semantic parsing uses discriminative models, like recurrent neural networks, to
label the roles in a sentence. 

Joachim Lambek was one of the pioneers of the mathematics of sentence struc-
ture and syntax and formulated many algebraic approaches of early computational
linguistics using his Lambek calculus. He acknowledged that the idea behind this ap-
proach could be traced back to Charles Sanders Peirce’s ideas about valency in chem-
istry.4 Lambek grammars, built using the Lambek calculus, extend basic categorial
grammars. The Lambek calculus helped stabilize approaches and notations and was a
forerunner to Montague grammar. 

The central idea of Richard Montague’s first paper in 1970 was to frame linguistic
semantics as a homomorphic mapping between two algebras, one syntactic and the
other semantic. In a series of three papers in the early 1970s Montague2 fleshed out a
formal theory that represents the standard theory for computational semantics for
most of the last of the 20th century. We call this basis the Montague grammar (MG).5

Montague expressed the semantics of the source into a logical form based on a the-
ory of the semantics. He provided a functional mapping between the syntax and the
logical form that preserves the structure and equivalences. While the statement of
this approach seems straightforward, maintaining the homomorphism (same shape)
between the forms is the tricky part.2 The intensional logic of Montague grammars is
a typed lambda calculus.3 Before Montague, linguists had no methods for assigning a
compositional semantics to natural language syntax due to the mismatch with first-
order logic. Montague’s type theory represents a solution to Gottlob Frege’s desire to
use function-arguments as the basic ‘glue’ to combine meanings, a view unknown in
linguistics at the beginning of the 1970s, yet now viewed as standard.17

Montague grammars have been a stepping stone in many different directions.
One direction is that MGs presume a tree structure, which favors  FSTs, HMMs, and
other finite state methods of syntax analysis.5 Another direction is to generalize into
algebraic terms, making the system more functional with better information theo-
retics. One direction has been to combine different ideas of semantic primes as the
starting lexicon. 

Much of the work in semantic linguistics has focused on the commonalities be-

1 For a sample detailed description see SLING, a frame-based semantic parser using a dependency grammar.15

2 Montague’s contributions came to an untimely end when he was violently murdered at age 40.

3 This makes these grammars well suited to functional languages like Lisp.
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tween human languages. One way is to use semantic primes, a basic list of primitives
under which to categorize terms. Anna Wierzbicka first posed these ideas in a semi-
nal work  in 1972.18 The  universal dependencies provide shared starting points be-
tween scores of human languages. The ‘universal semantic tagset’ (a different con-
cept) provides a (growing) set of cross-language primitives.19 These initiatives show
how  data  gathering  and  comparisons  between  human  languages,  made  available
through the Web, are remaking how computational semantics may move forward.

Three Possible Contributions Based on Peirce

Let us now weave Peirce and his potential contributions into the narrative. Con-
sistent with the Peircean guidelines through this book, we should look to be:

 Real —  Peirce  advocated  empirical  truth  for  describing  and  organizing  the
things in the world. Definitions or arrangements based solely in the mind are
psychological and not phenomenological. Hewing to a test of reality means what
we retain should be true in relation to what we have already modeled, helping
to ensure our methods remain consistent and coherent;

 Organized according to the  universal  categories — continuing to maintain rea-
soned splits into Firstness, Secondness, and Thirdness may offer some surpris-
ing keys and insights for our knowledge representations going forward;

 Logical — since logic is at the heart of the Peircean view. Logic fits well with the
ideal of formal grammars;

 Consistent with the logic of relations — Peirce has already provided us with signif-
icant guidance in his identification of relations and his logical treatments of
them, including algebraic notions to inform modeling;

 A good entity-attribute distinction — we have already pointed to the importance of
separating out attributes (a Firstness) from entities (a Secondness);

 Capable of distinguishing generals from particulars — we want discrete class-level
types (generals, a Thirdness) and item-level (particulars, a Secondness) ones;

 Attentive to the  sign representativeness in Peircean semiosis — Peirce’s ten sign
classes (see Table 2-2), or even analysis of his later 28- and 66-sign classifications,
are a rich target for applying mathematical or logical analysis for teasing out
rules for analyzing problems;

 Reflective of the probabilistic nature of truth — we should favor learning models
that support inductive reasoning and allow the use of probability distributions
to characterize some nodes; and 

 Contextual — in that we capture both the intensionality and extensionality of our
lexemes and chose word senses based on the overlap with accompanying text. 
The inclusion of inference and background world knowledge support this aim.20
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I discuss below three different approaches by which we may embrace these Peircean
guidelines in whole or part. I present the approaches in relative order of complexity
of  implementation,  starting  with  the  simplest.  We  begin  with  Peircean  part-of-
speech  tagging,  move  to  machine  learning,  and  then  conclude  with  a  dedicated
Peircean grammar. We can also combine these three approaches in various ways.

#1 - Peircean POS Tagging

The first and most direct incorporation of Peircean themes likely resides in relat-
ing  these  constructs  to  off-the-shelf  part-of-speech  taggers.  One  quick  approach
might be to map an existing schema to the KBpedia components, which we have al-
ready organized in  a Peircean manner.  Chen, the originator of  the  E-R modeling
ideas,  understood the entity-attribute  split  well.  I  have taken Chen’s  mapping of
word senses 21 and related it to existing KBpedia components:

Word Sense KBpedia Component

common noun
proper noun

transitive verb
intransitive verb

adjective
adverb

concept / type / entity /event
entity/event

relation
attribute
attribute

attribute (property)

Table 16-1: Simple POS Mapping

These senses map pretty well but lack consideration of sub-types within entities,
external relations or types. They also neglect many of the ‘gluing’ parts-of-speech
such as determiners, conjunctions or prepositions.22 Some modifications to an E-R
model approach might be undertaken to embrace the full structure of languages bet-
ter as found in some reference tagsets, but that is a demanding, manual task. Ninio,
in a recent review informed by Peirce, also put forward an approach to syntactically
label parts of speech.23

We need to go deeper into Peirce’s ideas about signs, language, and grammar to
understand how a Peircean approach to POS tagging might better proceed.  Peirce
had strong interests in word categories, more from a semantic than syntactical per-
spective, with original ideas about common nouns, proper nouns, pronouns, verbs,
and prepositions.24 Peirce understood a sentence as a formal proposition split into
two fundamental parts, the subject and the predicate (1902,  CP 2.318).1 In a formal
proposition,  the subject  is  definite.  Subjects  often  begin  as  indefinite  individuals
(such as ‘selectives’,25 e.g., some person), proceed as better understood and character-
ized into a definite individual (a ‘proper noun,’ e.g., Jimmy Johnson), and then may be
related to a type, a definite general (a ‘common noun,’ e.g.,  football coach). (1905, MS

1 By formal proposition I mean a sentence in the indicative mood; “for a proposition is equivalent to a sen-
tence in the indicative mood” (1903, CP 2.315), for which Peirce was mostly concerned. Contrast this to the 
other moods (1893, CP 2.291) or ‘quasi-propositions’, see below.
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280:41)  However, common nouns are not universal,26 with proper nouns providing
the ultimate subjects.27 Some predicates bring with them the need to also specify a
direct object as a complement to the intended subject, as in ‘Cain killed Abel.’ (1899,
CP 2.230) Other sentence constructions may also require multiple subjects through
the use of conjunctions (‘Bob and Mary went shopping’) or triadic relations (‘Bob do-
nated a scholarship to Mary’).

It is these kinds of constructions that help instruct what Peirce meant by a predi-
cate, or what he termed a rheme. A rheme is an ‘unsaturated’ term (1902, CP 2.317),
meaning it stands as the function within a propositional phrase that lacks (is ‘blank’)
a subject. Here is Peirce’s definition for verb:

“A verb, being understood in a generalized sense, may be defined as something logi-
cally equivalent to a word or combination of words, either making a complete propo-
sition,  or  having certain  blanks,  or  quasiomissions,  which being filled  each with a
proper name, will make the verb a complete proposition.” (1896, NEM 4:278)

Peirce goes on to say that “The places at which lines of identity can be attached to
the verb I call its blank subjects.” (1898, NEM 4:338)

This idea of blank subjects, and the role of the index in relation to them, is one of
Peirce’s pivotal perspectives. As Nöth notes, “indexical signs had traditionally not
been associated with the concept of representation, and indeed, the terminological
tradition had been to subsume only iconic and symbolic signs under this term.” 28

Peirce helps show and generalize the range of relations between things,  between
subjects and predicates, which indicate ranges of determinacy or selectiveness. We
see, for example, that we may characterize clauses, verb and noun phrases, preposi-
tions,  indicatives,1 adverbs,  and  adjectives  according  to  their  indexicality  and
whether the subject is determinant. 

Of course, the initial split of sentences into subject and predicate masks the fact
their syntax may be somewhat complex. Peirce applies the same logic, though, to
noun phrases and verb phrases as well as to other constructs he calls ‘quasi-proposi-
tions.’ This construct, which Peirce named a dicisign or dicent, is information-bear-
ing and adds further characterization to its subject. When decomposed, a dicisign
acts like a value pair with its two signs, like a full proposition, providing a function
sign (predicate) and a denotation sign (subject). The subject may itself be an index or
indeterminate, one of the reasons why Peirce called them ‘quasi-propositions.’ Like
Peirce’s viewpoint of the  breadth of  information,  the  dicent sinsign points to more
characteristics, or attributes, of the intended subject. Like the depth of information,
the dicent indexical legisign points to subsumption (‘ ___ is a man’ implied by the man
common noun) or external relations.  Hilpinen provided some of the first detailed
analysis of how Peirce viewed the proposition.29 

Table 16-2 combines these insights to characterize Peirce’s ten signs linguistically.
Note that the order in this table changed from Table 2-2 where the dominant ordering
was qualisign-sinsign-legisign (consistent with Peirce’s 1903 ordering in his Syllabus

1 Such as this, that, something, anything.
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[EP 2:294-295) to rheme-dicisign-argument (consistent with Peirce’s 1904 ordering in
a letter to Lady Welby [CP 8.341]):

Sign Name
(redundancies) Comments KBpedia POS1

(Rhematic Iconic) Qualisign onomatopoeic,30 ideophones, un-
countable (mass) nouns (?) abstractives

(Rhematic) Iconic Sinsign indefinites, conjunctives, disjunc-
tives attributes N, VI, ADJ,

ADV

Rhematic Indexical Sinsign direct experience, relations external relations DT, N,VT

(Rhematic) Iconic Legisign metaphors, puns, analogies, dia-
gram-like, genres (?) associations N, VI, ADJ,

ADV

Rhematic Indexical Legisign demonstratives, pronouns, proper 
names particulars N, VI

Rhematic Symbol (Legisign) common nouns types N, AUX

Dicent (Indexical) Sinsign ‘quasi-propositions’ for adjectives, 
adverbs, modifiers (in depth) attributes NP, VP,

ADJP, ADVP

Dicent Indexical Legisign ‘quasi-propositions’ for information
in breadth

external relations, 
subsumption, is-a NP

Dicent Symbol (Legisign) proposition (full), sentence OPEN NP + VP

Argument (Symbolic 
Legisign) multiple sentences graph measures ---

Table 16-2: Peirce’s Ten Signs for KR Relation to Linguistics

The sense that emerges is that Peirce’s strong links to information and represen-
tation mean there is much of value in Peirce’s linguistic views to KR and knowledge
management. While the information in this section could be used to set different
bases for labeling syntactic categories, it may be better to logically continue the ef-
fort to develop a tokenizer more attuned to Peirce’s unique views, as I discuss next. 

#2 - Machine Learning Understanding Based on Peirce

The index acts as a reference to the object, ultimately representing an individual
thing (including individual collections). (EP 2:407) The interpretant must have some
previous  (or  ‘collateral’)  acquaintance  with  the object  to  identify  that  individual
thing, what Peirce termed ‘collateral observation.’2 By this term, Peirce meant “previ-
ous acquaintance with what the Sign denotes.” (EP 2:494) Nothing of this observation
is psychological since the interpretant contributes no part to the observation. The
collateral observation plays a parallel role to context but is not the same. Collateral
observation is central to disambiguation since presently observed characters may be
compared with previous observations to separate out identities. Collateral observa-

1 I view these assignments as provisional. There is not much in the literature (or Peirce directly) on these as-
signments. I anticipate further research to refine these assignments somewhat.

2 Peirce also termed this collateral experience, collateral information, and collateral acquaintance.
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tions extend beyond the boundaries of the sentence.
Context and most arguments also extend beyond the boundaries of the sentence.1

If we are to hope for acceptable levels of  natural language understanding through KR
formalisms, we must also tackle these issues of collateral observation, context, and
the reasoned argument. To get at these aspects we perhaps want to combine some
form of semantic parser, better attuned to our organization of KBpedia by the uni-
versal categories and types, and machine learning, possibly leveraging knowledge su-
pervision, as we discussed in Chapter 4. 

 A semantic parser requires us to formulate a semantics, including language con-
struction, and then to learn how to apply it to new content with acceptable computa-
tional times.14 Sarbo and Farkas suggest a rather simple parsing method grounded in
their interpretation of Peirce.30 I agree with the authors that we want simple models
because most formal models of natural language are too complex. I also like their ap-
proach  using  a  pushdown  automaton,  which  is  more  capable  than  a  finite-state
machine. However, I do not agree with their grammar basis or some of their con-
struction rules. We have a different mindset and structure in KBpedia in the univer-
sal categories and typologies.

A couple of approaches look promising for next steps.  One of the approaches,
combinatory categorial grammar (CCG), we introduced above. The other approach,
Lambek categorial grammar (LCG) is closely related. CCG is an efficiently parseable,
yet linguistically expressive grammar formalism.  Because of its strong lexicon ap-
proach and suitability to types, CCG should be a good match with the typology design
of KBpedia. Researchers have developed a probabilistic CCG from question-answer
pairs using supervised learning from ontologies and knowledge bases.31 As shown for
transitive verbs, we can substitute meaning vectors as the learning basis.32 Perhaps
more promising is a tensor-based semantic framework that can be “seamlessly inte-
grated” with CCG for a “practical, type-driven compositional semantics based on dis-
tributional representations.”33 Edward Grefenstette’s thesis provides excellent guid-
ance on how to relate distributional representations of meaning to CCG.34 

Another useful aspect of KBpedia is the availability of a text corpus (largely from
Wikipedia) for all of the reference concepts in the system. By leveraging this content,
we can create distributional representations that enable us to overcome fixed-pair
inputs (such as question-answer) used to train many of these CCGs. This additional
distributional  component  improves  generality  beyond  the  fixed  input  vocabulary
used in training, making it more suitable for open-vocabulary applications.35 Lastly,
CCGs warrant testing against KBpedia due to the availability of open source imple-
mentation kits. OpenCCG is perhaps the best known, with helpful online tutorials.

Though invented before CCGs and overlooked for a period, LCGs provide a simpler
and more transparent mapping between phrase-structure trees, dependency struc-
tures, and semantic terms. 36 CCGs, in practice, have tended to need a large number
of non-categorial rules, making them harder to understand and less generalizable.36

One trend we see in computational linguistics is to combine logical and statistical

1 Of course, it is possible to write out full syllogisms in the confines of a single sentence, but most often argu-
ments are made over multiple sentences.
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approaches to natural language.1 Logical, or compositional, approaches relate syntac-
tical phrases to the meanings of their parts and how they are combined. These are
the traditional approaches of semantic parsers to map messages to logical  forms,
which lend themselves to dealing with inference, ambiguity, and vagueness. On the
other hand, statistical approaches, including machine learning, focus more on the in-
dividual word and phrase meanings or broader notions of content (and context) be-
yond the sentence.39 What is exciting about a combined approach is that we can look
at the compositional and semantic aspects of our language, mapped into the catego-
rial perspectives of Peirce’s logic and semiosis, and then convert those formalisms to
distributions over broad examples provided by KBpedia’s knowledge.

#3 - Peirce Grammar

At a more speculative level, we can look to going to the heart of the matter: fully
adopting Peirce’s views on logic and relations regarding how we specify our gram-
mars. Full adoption is not such a wild idea since there have been attempts and probes
around a ‘Peircean grammar’ for at least a couple of decades. The basic advantage of
this approach is that we do not need to shoehorn Peircean ideas into existing ap-
proaches, but are free to set up a clean infrastructure from scratch.

Patrick Suppes was one of the first to question the traditional approach of trans-
lating sentences into the formal notation of predicate logic.40 He observed that infer-
ence in predicate logic bore little resemblance to the informal reasoning in English.
He began to explore what he called  extended relation algebras, which were a model-
theoretic semantics for English that used neither quantifiers or variables, but only
constants on operations on sets and relations. 

Chris Brink, in his 1978 thesis,  was explicit about the influence of Peirce. 41 He
noted that Peirce’s first 1870 paper on the “Logic of Relatives”42 was instrumental in
guiding his  thinking.  Peirce  classified logical  terms into three classes  — absolute
terms,  (simple)  relative terms, and conjugatives  — which correspond roughly to
monadic, dyadic, and triadic predicates.43 Within a decade Brink and his students
were referring to this approach as the ‘Peirce algebras,’ a term which has stuck. One
of the basic operations was the ‘Peirce product,’ R:A, which is the set of all elements
related by R to some element in A (a basic matrix algebra). Relatives, as dyadic rela-
tions, can be represented algebraically rather than by conventional model theoretics.
We can perform arithmetic over the individual identities. Boolean modules formalize
the calculation of  sets  interacting with relations via  the Peirce product.  This  ap-
proach enables us to treat the system as a two-sorted algebra (Boolean algebra with
multiplication via the Peirce product). A two-sorted algebra makes explicit the im-
plicit relation of concepts and roles, a concern for early KR languages for AI.

Eventually, this algebra was shown able to express the semantics of reasoning
over sets, including for subsumption relations.44 Using an algebraic approach to rea-
son over sets becomes simpler since equations are sufficient to capture first-order

1 One genesis of this grand synthesis is a 2010 paper by Coecke et al., “Mathematical Foundations for a Com-
positional Distributional Model of Meaning,”37 first unveiled in 2008.38
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reasoning using the calculus of relations for unions, intersections, and complements.
De Rijke provided proof for full Peirce algebras in his 1993 thesis and showed the link
with dynamic modal logics.45 This confluence of work naturally led to efforts to try to
find a grammar to match this algebra.

Michael Böttner defined a ‘Peirce grammar’ in 2001 and applied it to natural lan-
guage.46 It is a context-free grammar. The basic idea of the grammar is a direct one
using Peirce algebra. Rather than translating the semantics first to a set-theoretic
metalanguage, the Peirce grammar uses only algebra with the equation sign ‘=’ as the
single predicate. A Peirce grammar allows computations on strings directly rather
than to variables or a pre-computation of an intermediate representation. Böttner
introduced tree structures to handle more efficiently the inherently ‘flat’ nature of a
Peirce algebra representation (useful for programming languages; it may be less so
for natural language sentences, which are shorter). A Peirce grammar can support
references outside of the sentence, again as a function of storage design, attractive
for context. Böttner presents a strong definition of a Peirce grammar for English (see
his Table II). While the approach neglects some nuances, the approach does appear to
handle the ideas of context and language fragments (such as clauses) in a computa-
tionally efficient manner. 

Hans Leiß later took up some of the weaknesses and provided some extensions to
overcome them.47 Leiß noted that prior Peirce grammars had only modeled exten-
sional aspects of natural language. It was unclear how to handle intensional aspects
(attributes) or verbs with propositional arguments. The ‘trick’ of coding linguistic
strings directly means the unit boundaries (sentence, paragraph, arbitrary window)
should be finite; the limits have not been tested. Leiß raises questions about whether
and how we should handle noun phrases.1 On the other hand, the approach does not
use variables. We can construct meanings from a few basic ones with equality and
subsumption capturing the relations between sets and their relations. Leiß, as well,
looks to the tree structure to provide a more tractable approach to the inherent ‘flat’
structure of a pure Peirce grammar. As Leiß concludes:47

“Peirce grammar differs from other grammatical theories in that meanings are first-
order objects, abstract sets and relations, which can only be composed by algebraic
operations. Extended Peirce grammar adds a further sort of meanings, finite trees of
sets and relations, from which constituent meanings can be extracted. These ‘second-
class’ values have no ontological motivation—they only serve as intermediate stages
in the evaluation of sentences, allowing us to give the context of an expression an ac-
cess to the meaning constituents of the expression.” (p. 162)

From there, for more than ten years,2 the trail goes cold. Relational grammars, in
general, have gone out of favor. It very well may be fundamental limits exist with re-
lational grammars, or particularly Peirce grammars, that relegate them to a minor
footnote in the history of computational linguistics. However, I suspect that Peirce
grammars, as they may evolve, may yet prove a seminal player in that history.

1 We are also missing a design or approach to compositionality.

2 Leiß’s publication is dated in 2009, but based on a conference paper presented in 2005.
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COGNITIVE ROBOTICS AND AGENTS

Robotics is a potential testbed for Peircean ideas about representation and KBpe-
dia. One reason, of course, is an economic demand for greater autonomy combined
with  cognition.  Advances  tend  to  appear  where  the  most  imperative  resides.  A
Peircean approach will also aid robotics designers, and much in the ideas about rep-
resentation will benefit robotics, particularly in the interface with cognitive systems.
Further, while language is symbolic, cognition and understanding are more. For the
idea of Thirdness to become a general, it must pass the threshold of the habitual as
Peirce explains the matter. An emphatic ‘Fire!’ is five symbols combined into a string
symbol on a page, but shouted in a dark theatre with an intonation that signals real
fear, invokes immediate action.  There is nothing to ‘think through’ before acting,
though that starts immediately as well.

C  ognitive robots   embrace the ideas of learning and planning and interacting with
a dynamic world. When combined with mobility and perception sensors, this leads to
greater autonomy. When combined with speech recognition and natural language
understanding (NLU), we can instruct the robot by voice commands or interact with
it as a virtual agent for Q & A or knowledge assistance. Over time, researchers have
tested and designed various cognitive   architectures   for integrating cognitive and ro-
botic functions, with a preference for a modular design with generic interfaces.48

Time coordination for how long it takes modules to process their tasks require
trade-offs in expressiveness; simpler and more abstract representations appear best.
We also see open-source, modular robot languages and operating systems emerge
(such as the Robot Operating System, ROS), the Robobrain knowledge engine initia-
tive  and even relatively  affordable  autonomous robot  platforms (such as  iCub or
ROBOTIS OP2) emerge. Cognitive robotics promises to improve our baseline under-
standing of knowledge representation. Perception of and interaction with the exter-
nal world are integral to sign communications. If we are ever to approach anything
like true natural language understanding, then we need to incorporate all of the uni-
versal  categories in our reality.  Autonomous,  cognitive robots are the anvil  upon
which these understandings may get hammered out.

Lights, Camera, Action!

Peirce’s semiosis is not consistent with traditional computational views of cogni-
tion, which are a variation of input-output models. How the symbol gets interpreted
is neglected by the traditional view.49 Peirce’s semiosis more closely represents the
theory of  e  mbodied cognitive scien  ce  , which differs from the tradition in pursuing
three goals. These goals are to elevate the importance of the body as an explanation
for various cognitions, to understand the body as a contributor to cognition, and to
broaden our view of how agents use the environment to affect cognition (mood light-
ing, staging, arranging and positioning).50 

Similar to our example of shouting ‘Fire!,’ awareness of the environment is an es-
sential factor in cognition. The h  omunculus argument   of the little man interpreting
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things in our heads must be grounded in some external reality to keep that interpre -
tation from cascading into an infinite regress. This ‘interpretation solely in the mind’
is the fallacy in Descartes’ worldview, as well as in the traditional view of cognition.
Successful cognition also requires learning, and epigenetic robots depend on percep-
tions or kinesthetics (learning from physical actions) for the new information from
which to learn. The forming of symbols from that learning is one way to achieve a
certain Thirdness. Further, as long as we look at knowledge as only symbolic, we will
miss the importance of Firstness and Secondness. Everything has its place.

Peirce indeed acknowledged the unconscious reaction and the role of instinct in
signs and how we interpret them. Peirce believed in an unconscious aspect of the
mind (1903, EP 2.188; 1903, CP 5.108; 1882, CP 7.64;  c.f., 1902, CP 7.363-367). Formal
reasoning, the sphere of theory and analytics and logic, is part of the conscious mind,
but the realm of action and pragmatic knowledge is a function of the unconscious.

“Reasoning, properly speaking, cannot be unconsciously performed. A mental opera-
tion may be precisely like reasoning in every other respect except that it is performed
unconsciously. But that one circumstance will deprive it of the title of reasoning. For
reasoning is deliberate, voluntary, critical, controlled, all of which it can only be if it is
done consciously. An unconscious act is involuntary: an involuntary act is not subject
to control; an uncontrollable act is not deliberate nor subject to criticism in the sense
of approval or blame. A performance which cannot be called good or bad differs most
essentially from reasoning.” (1903, CP 2.282)

Peirce held belief, which we saw in Chapter 2, as an important aspect of knowledge
that occurs mostly in the unconscious. (1905, EP 2:336; 1905, CP 5.417) Habitual stuff
and reactive actions are part of common sense and not (generally) part of conscious-
ness. However, the informal ‘reasonings’ in the unconscious are often more reliable
than conscious reasoning and logical inference:

“Association is the only force which exists within the intellect, and whatever power of
controlling the thoughts there may be can be exercised only by utilizing these forces;
indeed, the power, and even the wish, to control ourselves can come about only by the
action of the same principles. Still, the force of association in its native strength and
wildness is seen best in persons whose understandings are so little developed that
they can hardly be said to reason at all. Believing one thing puts it into their heads to
believe in another thing; but they know not how they come by their beliefs, and can
exercise no control over the inferential process. These unconscious and uncontrolled
reasonings hardly merit that name; although they are very often truer than if they
were regulated by an imperfect logic, showing in this the usual superiority of instinct
over reason, and of practice over theory. They take place like other mental sugges-
tions  according to the two principles  of  similarity  and connection in experience.”
(1886, CP 7.453)

I think two implications arise from Peirce’s observations. First, we begin to unveil
a bit of the role of knowledge bases as ‘belief’ bases insofar as they make direct asser-
tions. We can know that balls are round and squares have four equilateral sides and
can act on these assertions without further analysis. Second, ‘instinct,’ as ephemeral
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as it is to define, plays an essential role in guiding actions. Still, what does Peirce
mean by ‘instinct,’ one of his most common descriptors?

Peirce first sees two sources of instinct, one innate or biological, the result of evo-
lution, what he calls  inherited, and the other one of infant training and inculcation,
what he calls traditional. Peirce notes that instincts may change when circumstances
change, but that is rare since circumstances hone our instincts over generations of
trial and error. Peirce splits his views of logic into a logica docens, the logic of theory
and study, and a logical utens,51 the internal logic of practice as influenced by instinct.
The first logic is that of the scientist, the second that of the practical actor.

“If an action, although complicated, has very often to be performed, and is almost al-
ways performed in nearly the same way, it frequently happens that we have an in-
stinct for performing it. The action of walking is an example; the action of throwing a
stone is another. Now instinct is remarkable for its great accuracy, as well as for its
adaptedness to its purpose; and it would usually be unwise in the extreme to attempt
to perform such an act under the guidance of theory; for theories have to be studied
very long and very deeply before they can be entirely freed from error; and even then
the application of them is laborious and slow.” (n.d., NEM 4:187)

Peirce did not view instinct as inferior to formal reasoning while noting that “action
in general is largely a matter of instinct.” (1905, CP 5.499) He saw that “we all have a
natural instinct for right reasoning.” (1902, CP 2.3) 

“If so, in what respect do you hold reasoning to be superior to instinct? Birds and bees
decide rightly hundreds of times for every time that they err. That would suffice to
explain their imperfect self-consciousness; for if error be not pressed upon the atten-
tion of a being, there remains little to mark the distinction between the outer and the
inner worlds.” (1902, CP 2.176)

“Of excessively simple reasonings a great deal is done which is unexceptionable. But
leaving them out of account, the amount of logical reasoning that men perform is
small, much smaller than is commonly supposed. It is really instinct that procures the
bulk of our knowledge; and those excessively simple reasonings which conform to the
requirements of logic are, as a matter of fact, mostly performed instinctively or ir-
reflectively.” (1902, CP 2.181)

Peirce saw that instinct and abduction are linked.1 (1903, CP 5.171) While Peirce held
that pragmatism is a conscious discipline (and thus in the realm of  logica docens),
there may be instinctual aspects of how we conduct it. We often instinctively screen
through the multiplicity of abductive options to select those for more expensive in-
ductive attention.  We need to  evaluate  options  and potential  outcomes  based on
practical measures and instincts. Our conscious reasonings need to incorporate an
inspection and role for instinct.

Practical  implications for robotics  arise from this  discussion.  We can envision

1 Note that Peirce specifically excludes consideration of instinct in the scientific method and its quest for 
truth, since all assumptions should be open to question. Pragmatism, however, adds action and instinct to 
the equation.
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sub-systems that deal with direct knowledge — based on the ABox and perhaps direct
typing — tied more closely to the perceptual sensors and kinesiology of the agent.
These subsystems may be linked more closely to instinctual actions such as resource
acquisition, risk avoidance, and protection. Perhaps this perspective offers insight
into how to monitor the external environment while all inputs are within expected
parameters versus outliers or disruptions that may need to trigger more analytic
modules. It would also seem that instinctual sub-systems may be more attractive ar-
eas for rules-based approaches or unsupervised machine learning. The underlying
idea of instinct is what is the best way to act under given contexts and events.

Cognitive versus reaction sub-systems also require different time demands and
impose different time delays. Robot information architectures need to define mod-
ules and optimize effectiveness-performance trade-offs. The integration of NLU re-
quires complements to perceptions and actions, a current area of active interest.52

The conventional perspective is to ask how we can better import existing knowledge
representation and systems into cognitive robots. However, perhaps we need to pose
that question the other way around. 

“Wisdom lies in nicely discriminating the occasions for reasoning and the occasions
for going by instinct. Some of my most valued friends have been almost incapable of
reasoning; and yet they have been men of singularly sound judgment, penetrating and
sagacious.” (1903, CP 7.606)

Grounding Robots in Reality

One  way  to  avoid  the  homunculus’  infinitely  regressing  explanations  is  to
‘ground’ our symbols into some base truth, called the ‘symbol grounding problem.’
Grounded symbols no longer have free variables and become the ‘indecomposable’
primitives of the representation. The implication is that higher-order concepts are
derivations of lower-level concepts until the concepts can no longer be divisible. Ul-
timately, for cognitive robots, the processing of natural language, be it from com-
mands or interacting with humans, must be part of this grounding. It may take the
form of a semantic model underlying both language and robot commands that is also
related to robotic perception and actuation; see combinatory categorial grammars52

as mentioned in the prior use case. Cangelosi sees the symbol grounding problem in
similar  terms,  where  the  questions  of  perception  and  action  and  how  they  are
represented mentally is a core issue in cognitive robotics.53 Deb Roy sees the repre-
sentation more broadly, embracing the idea of symbols as included in semiosis based
on Peircean concepts.54 He also wants to specifically relate “sensing and motor action
to words and speech acts.”

While essential considerations, some argue that the question of grounding goes
well beyond mere representation.55 The nature of the question is evolving to one of
meaning1 and how that relates to grounding. That is because for a cognitive robot to

1 Note that meaning has many connotations including existential, linguistic, philosophical, psychological, 
semiotic, of life, and others. Our use embraces all of these senses.
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formulate new knowledge and symbols, there must be some guiding principles or
functions that go beyond a representative grounding. Some mechanism must exist
for emergence or how incorporation of new information may lead to new actionable
knowledge. Roy, again, tries to get at this question by posing a split of ‘meaning’ into
referential, functional, and connotative forms. He prefers a simple base language, mod-
eled on that used by young children.56 Stanton believes we should try to mimic the
evolution of the brain and include intrinsic ‘value systems’ in autonomous robots to
process novel experiences.57 Stanton nibbles around the edges for how Peircean con-
cepts may contribute to this task. We have also tended to overlook the adaptability
and emergent properties of symbol systems for robotic intelligence.58 Ricardo Gud-
win, steeped in Peircean viewpoints, takes the question to a different level when he
notes that we do not have a symbol grounding problem, yet one of grounding to the
icon.59 Icons are a representation of Firstness and perhaps better intimately tied to
the inputs of sensors in robots. 

No matter how framed, KBpedia provides three solid contributions to the ground-
ing problem. First, of course, it provides a complete and coherent view of representa-
tion,  knowledge,  actions,  events,  and  relations.  Second,  KBpedia  as  a  reference
knowledge graph grounds the system ultimately in Firstness (monads), Secondness
(particulars),  and  Thirdness  (generals)  no  matter  where  we  start  the  inspection.
Third, we construct KBpedia with multiple knowledge bases that can provide the ref-
erence base for both analytic and instinctual purposes and tests. The structural re-
cursion and richness of KBpedia structure  appear an excellent fit for cognitive ro-
botic architecture and purposes.

Robot as Pragmatist

As crucial as symbol grounding is, I think we still may be missing the pivotal im-
portance of robotics to knowledge-based artificial intelligence. Up to this point, we
have framed the challenge as one of getting AI advances — including ideas of repre-
sentation and meaning — into robots. What of the other way around?

What this short survey has shown us is that robots may bring their own contribu-
tions to these questions. We have seen how important it is to integrate the dimen-
sions of perception and action into a cognitive processing robot. We recognize both
analytic (cognitive,  thinking) tasks and activities more dominated by instinct and
kinesthetic action. Cognitive robots demand that we deal with the challenges of inte-
gration, coordination, and choreography. I think it fair to observe that doing KBAI in
a purely symbolic, unembodied state is likely to provide an incomplete testbed for
knowledge, cognition, and learning. Human intelligence evolved in a mobile, interac-
tive environment. We may need to embed artificial intelligence in dynamic, physical
contexts to approximate similar capabilities.

Parisi et al. argue how multimodal representations can improve the robustness of
recognizing actions, action-driven perception, sensory-driven motor behavior, and
human-robot interaction.60 Robot vision systems are providing a different perspec-
tive on how we need to represent best things like shapes, vectors, and objects. Brain
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studies show that 'what' and 'where' have separate recognition areas, lending cre-
dence to the need for modularity. 

Cognitive robots promise to help us improve our knowledge representations and
AI efforts. Cognitive robots may be the drivers for better capabilities in planning, co-
ordinated  action-cognition  responses,  human-robot  interactions,  and  learning  to
perform an ever-growing list of functions in real-time settings. Solving the compet-
ing demands for cognitive robots can only make us more pragmatic.
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