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POTENTIAL USES IN BREADTH

e begin this last  Part V looking at  potential applications. These knowledge
management uses, made possible by following Peirce’s guidelines, leverage

KBpedia and domain extensions to it. I have assembled these examples to illustrate
our intent in this  practionary to attain what Peirce called “the third grade of clear-
ness of apprehension”: 

W

“It appears, then, that the rule for attaining the third grade of clearness of apprehen-
sion is as follows: Consider what effects, that might conceivably have practical bear-
ings, we conceive the object of our conception to have. Then, our conception of these
effects is the whole of our conception of the object.” (1878, CP 5.402)

It is, of course, impossible to conceive of all practical effects from a thing. However,
in this chapter, and the one that follows, I try to share what I see as some important
practical effects of applying Peirce’s guidelines to knowledge representation. To my
knowledge, few have implemented the ideas listed in this or the next chapter. The
practical effects of these ideas are strong potentials with reasonable prospects for
being realized. These ideas, collectively, help us begin to apprehend this ‘third grade’
of clear understanding.

I have selected these case examples both to highlight the diversity of potential
uses and to showcase those with the highest likelihood of impact. Because what man-
ifests in the future often ‘surprises,’ I am likely overlooking some impactful and prac-
tical effects of what may unfold in the future. Nonetheless, this method of selection
does conform to what Peirce called the pragmatic maxim as a way to sift through the
myriad of possible explanations for things to focus on those with the most economy
and likelihood of bearing fruit.

I introduce each case with some context and a problem statement, then an intro-
duction of concepts and existing building blocks that pertain to it, then to possible
generalizations and potential practical effects were the case implemented. I do not
exhaust the potential high-impact applications in these chapters. Recall we provided
a long list of other possible uses of our approach in Table 4-1 in Chapter 4. Consult that
list for a fuller picture of potential applications. You will see, for example, that the
case studies in this concluding Part V do not include applications such as ontology-
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driven applications (ODapps), concept alignment, entity and concept extraction, and
semantic search, to name just a few of the important missing ones. 

In this first concluding chapter, I  briefly present about a dozen possibilities in
breadth that introduce a variety of practical KR uses. These possibilities are more of
an overview than the in-depth cases in the following chapter, but in their totality
provide a good sense of potentials. We split these dozen possibilities into near-term
potentials, logic and representations, and other more speculative potentials. The or-
der of presentation is from the near-at-hand to the speculative. In the next Chapter
16, we present three practical applications, also pretty near at hand, in a considerable
amount of  depth. The combination of these two chapters of breadth and depth, the
dimensions of  Peirce’s  definition of  information (Chapter  2),  broadly  captures  the
sense of practical and potential uses of our approach.  Chapter 17 concludes this last
Part V of the book, re-capping Peirce’s guidelines for knowledge representation.

NEAR-TERM POTENTIALS

We have already discussed how ontologies may drive bespoke applications and
Web services. We have seen the importance of organizing attributes and mapping to
them for instance characterization and intensionality. Four further potentials  are
also  near  at  hand  in  word  sense  disambiguation,  relations  extraction,  reciprocal
mapping, and extreme knowledge supervision. These potential applications all are
examples of leveraging the rich structure of KBpedia and its extensions.

Word Sense Disambiguation

 Word sense disambiguation is picking the correct meaning for a word where it
has multiple meanings.1 Vocabularies grow by either minting new words or giving
new meanings,  also  called  senses,  to  existing words.  Multiple  senses  for  common
words is a historical linguistic result of the bifurcated chaining of new word senses
for new uses based on adjacent metaphors.1 This mode of how new word senses get
coined conforms to the least ‘cognitive cost’ for generating, interpreting, and learn-
ing them.2 Some of these senses, such as game for hunted fowl or game for an amusing
pastime, may have diverged long ago with a broad span of meaning.

The traditional approach to word sense disambiguation (WSD) uses dictionaries to
look up the various senses of a word.  Lesk is a leading method, wherein we search
the various word senses in a dictionary based on the neighboring text for the search
term. The Lesk algorithm calculates the overlap of the sense definition of a word and
the contextual definitions of the terms that surround its use, with variants allowing
us to control the sliding window or other parameters.3 The limitation of the Lesk ap-
proach is that it depends on the wording of the definitions. We may also base word
embeddings on other factors, including structure and other features.4 

1 WSD is also closely related to named-entity recognition or named-entity disambiguation. The dictionary ba-
sis shifts from word senses to entity characterizations (attributes), but much else in approach is similar. 
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Unsupervised learning surfaces other rules and insights useful to WSD. Nearly a
quarter-century ago Yarowsky showed a strong tendency for one word sense per dis-
course and collocation.5 Choosing the most frequent sense for a multi-sense term is
one of the best performing heuristics.6 On a more abstract front, Sun has shown a
framework that regularizes the structure of feature-rich corpora, which can derive
training models that can converge rapidly and reduce generalization risk.7

 Methods for word sense disambiguation may also learn from large knowledge
sources, with  Banko and Brill one of the first.8 One of their findings was that the
larger the number of annotations for term entries, the better is the resulting accu-
racy. More recently, Ponzetto and Navigli have demonstrated that knowledge har-
vested from Wikipedia can be efficiently used to improve the performance of a WSD
system.9 Adding Wikipedia links to baseline approaches can further enhance disam-
biguation performance.10 Still, WSD for state-of-the-art systems has 2% to 5% error,
not including inter-annotator differences.  These performance figures  are also for
very limited domains with corpora and training sets known in advance. Word sense
disambiguation applied to new domains needs to overcome what is  known as the
knowledge acquisition bottleneck, which is the cost of finding, structuring or anno-
tating knowledge for WSD and other natural language processing applications. Many
difficulties occur in acquiring tagged senses for WSD.

The potential of KBpedia and how it is structured to improve the WSD picture is
profound. First, we have an instance-rich knowledge structure. Not only does that
structure bring direct benefits, but the hundreds to thousands of instances per type
also provide a rich content base for various word- and sub-graph embedding models.
Second, the KBpedia structure is coherent. Third, we base KBpedia on Peircean ideals
of knowledge representation. Its features are mostly  lexically based (relations, at-
tributes, senses, and meanings), which means that abstraction layers through the use
of neural nets have a higher prospect for being interpretable (and coherent). Fourth,
because of the degree of semantic relatedness in the structure, chances are greater
that neighbor-based methods to WSD will perform better than alternatives. Fifth, the
KBpedia features, as Appendix C describes, are a richer base for structure regulariza-
tion methods than what Sun has analyzed.7

So, what we see with a KBpedia-based approach to WSD is one that combines all of
the best methods in a single package. Its contextual understandings can extend to
entity recognition and disambiguation, as well as for concepts and relations. KBpe-
dia’s graph structure, with its emphasis on trichotomies and typologies, should also
promise better performance because of its comparative simplicity and cleanliness.
We have strong dictionary and synonym bases, combined with a coherent and robust
graph structure with millions of instances with content, which is expandable for new
domains, and testable with the potential for continuous improvement. 

Relation Extraction

In the context of relation extraction, most define ‘relation’ as a form of connec-
tion between two objects. The objective of relation extraction, then, is to identify and
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extract this relation. In contrast, we have seen in the context of Peirce that a general
relation may specialize into one of three forms: attributes, external relations, or rep-
resentations. Our Peircean approach also gives us better tools to identify and extract
general relations, and then to organize and reason over them. 

Relation extraction attempts to correctly identify and extract what is essentially
an RDF triple of subject-predicate-object. Sometimes the subject placeholder is blank or
unknown; sometimes the object placeholder is blank or unknown. (Theoretically, we
could also treat the predicate slot as a blank.) Because of these structural aspects to a
relation, the earliest forms of extraction put forward by Hearst in 1992 used many
heuristics applied to lexico-syntactic patterns.11 These techniques are surprisingly ef-
fective for many relation patterns; many systems still use them. The kernel method
builds on this approach by looking for patterns within generalized tuples. Supervised
approaches can also work quite well since we can pose the problem as one of binary
classification. Relation extraction was also one of the first applications of the use of
knowledge bases to inform labeled examples, what we now call distant supervision,12

which remains one of the better-performing methods. More recently, joint inference
on both entities and the relations looks to improve extraction efficiency further.13

Relation extraction has some unique uses within NLP methods. First, of course, it
is the method for extracting relations (though, as mentioned, this has not yet been
distinguished from attributes and representations). Second, we may find patterns to
help narrow the identification of new concepts  or entities by analogy to existing
complete patterns. In the most effective sense, we should be able to narrow the ap-
plicable types for the new concepts or entities as well, but that is little applied. The
potential exists to improve significantly our ability to identify previously unseen en-
tities, not already in our dictionaries or  gazetteers. Third, because of its patterned
nature, we also value relation extraction as a technique used in  data mining and
question answering.14 Last, the potentials for relation extraction are even more vast,
which I get to in a moment.

The  TextRunner and then  KnowItAll and  ReVerb efforts from the  Etzioni lab at
the University of Washington, and more recently the Nell project from Carnegie Mel-
lon University, have been mining Web sources to discover relations and their associ-
ated  entities.  These  efforts  use  open  information  extraction as  a  technique  for
knowledge base population. These approaches are useful,  for example, to identify
new entity members for specific types, sometimes called ‘slot filling,’ with millions of
candidates identified. Another application is to disambiguate entities based on con-
text. Besides these university efforts, commercial entities have been doing the same.
Still, relation extraction is a comparatively inaccurate NLP task due to the variability
in the triples structure in language and the immense number of potential entities.

KBpedia can improve all aspects of extracting, identifying, reconciling, and orga-
nizing the three aspects of relations, which also should lead to new capabilities in
ontology learning and better capabilities in question answering and data mining. In-
spections of the object slot may also aid in error detection of values and other possi-
ble misassignments. We can realize these potentials due to the better characteriza-
tion and structure of KBpedia. 
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If we someday want to create ontologies from raw input text, the dream of ontol-
ogy learning, we will require broad and accurate characterizations of relations to de-
compose the meaning of text structure. We have already mentioned the fine-grained
structure of relations in KBpedia. The three segments of attributes, external rela-
tions, and representations, organized by types, provide better structure for evaluat-
ing relations. An initial task is to inspect and map relations from  VerbNet and the
open IE projects. The Nell project also provides domains and ranges, which should be
helpful to relate types to specific predicates. These characterizations, in turn, would
enable better mapping and inference of entity types to predicates and other pat-
terns. The feedback from this process would undoubtedly surface improvements to
KBpedia, which would feedback into better extractions anew. Computerized machine
reading or natural language understanding will need these capabilities. The area of
relations extraction should be a fruitful research focus for many years to come.15

Reciprocal Mapping

The standard method of mapping is to relate new concepts and entities in an ex-
ternal knowledge ‘source’ (B) to the master or governing one in a ‘target’ resource
(A).  The  use  case  typically  uses  the  target  resource  as  a  reference  for  external
sources, possibly for data federation or integration. The mapping statements take
the form of A:B or B:A. However, the external source may also be a valuable contribu-
tor to new concepts or entities for the target resource. In this use case, our interest is
adding more A’ to A, rather than simply mapping statements. We call this use case
‘reciprocal mapping,’ a topic in Chapter 13. Reciprocal mapping is not warranted in all
cases, and only best applies when we encounter a quite complete external source, as
is the case of Wikipedia contributing to KBpedia.16 It is also a particularly useful tech-
nique where one wants to augment an existing knowledge graph, perhaps in adding
domain extensions to a starting basis in KBpedia.

First, let’s assume that we have already mapped the matching concepts between B
 A and B itself is a rich external source.→ A and B itself is a rich external source. 1 What we want to do is to use this linkage

to propose a series of new sub-classes that we could add to A (KBpedia in our example
case) based on the sub-categories that exist in B for each of these mappings. The
challenge we face by proceeding in this way is that our procedure potentially creates
tens of thousands of new candidates. Because the B category structure has an en-
tirely different purpose than the KBpedia knowledge graph (A, in this case), and be-
cause B’s creation rules are completely different from those of A (KBpedia), many
candidates  are inconsistent  or incoherent to  include.  A cursory inspection shows
that we should drop most of the candidate categories. It is not tenable to review hun-
dreds of thousands of new candidates manually, as is the case when B is the size of
Wikipedia; we need an automatic way to rank potential candidates.

Several factors differ for reverse (reciprocal) mapping from our standard B  A→ A and B itself is a rich external source.
mapping case. First, we need to find missing clusters or new concepts or types in B

1 Any sufficiently complete or robust external ontology closely related to the current domain needs may ful-
fill this role.
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that fit, but are missing, in A. Second, we need to ensure the scope and boundaries of
concepts or types in B are roughly equivalent to those in A. We may expend consider-
able effort to clean the source B type and category structure prior to the reciprocal
mapping. Third, we also need to capture structural differences in the source knowl-
edge graph (B). Possible category matches fall  into three kinds: 1)  leaf categories,
which represent child extensions to existing KBpedia (A) terminal nodes; 2) near-leaf
categories, which also are extensions to existing KBpedia terminal nodes, but which
also are parents to additional child structure in the source; and 3)  core categories,
which tie into intermediate nodes in KBpedia that are not terminal nodes. By segre-
gating these structural differences, we can train more precise placement learners.

We automate this process with an  SVM classifier trained over graph-based em-
bedding vectors generated using the DeepWalk method.17 DeepWalk learns the sub-
category patterns that exist in the B category structure in an unsupervised manner.
The result is to create graph embedding vectors for each candidate node. Our initial
B  A maps enable us to create training sets with thousands of pre-classified sub-cat→ A and B itself is a rich external source. -
egories quickly. We split 75% of the training set for training, and 25% for cross-valida-
tion. We also employ some hyperparameter optimization techniques to converge to
the best learner configuration. Once we complete these three steps, we classify all of
the proposed sub-categories and create a list of potential subClassOf candidates to
add into KBpedia, which we then filter by relevance score and vet manually. 

The reference ‘gold’ standards in the scored training sets (see Chapter 14) provide
the  basis  for  computing  all  of  these  statistics.  We  score  the  training  sets  as  to
whether a given mapping is true or false (correct or not). (False mappings should be
purposefully introduced.) Then, when we parse the test candidates against the train-
ing set, we note whether the learner result is either positive or negative (indicated as
correct or indicated as not correct). When we match the test to the training set, we
thus get one of four possible scores: true positives (TP), false positives (FP), true neg-
atives (TN) and false negatives (FN). Those four simple scoring categories are suffi-
cient to calculate any of the statistical measures, as we discussed in Chapter 14. 

We capture the reciprocal mapping process using a repeatable pipeline with the
reporting of these various statistical measures, enabling rapid refinements in param-
eters and methods to achieve the best-performing model. Once appropriate candi-
date categories are generated using this optimized model, we then manually inspect
results and make final selections. We then run these selections against the logic and
coherency tests for the now-modified graph and keep or modify or drop the final
candidate mappings depending on how they meet the criteria. Our experience sug-
gests this semi-automated process may take as little as 5% of the time it would typi-
cally take to conduct this process by comparable manual means.

So, machine learning methods may reduce the effort required to add new con-
cepts or structure by 95% or more. Machine learning techniques can filter potential
candidates automatically to reduce greatly the time a human reviewer has to spend
to make final decisions about additions to the knowledge graph. A reusable pipeline
leads to fast methods for testing and optimizing parameters used in the machine
learning methods. We can systematically tune and rapidly vet this pipeline.

308

https://arxiv.org/abs/1403.6652
https://en.wikipedia.org/wiki/Support_vector_machine


POTENTIAL USES IN BREADTH

Extreme Knowledge Supervision

Recall from Chapter 4 that knowledge supervision is the purposeful use and structur-
ing of knowledge sources and graphs to provide features and training sets for KBAI.
Distant supervision uses the same sources, though employed as is and not purposefully
staged. In knowledge supervision, we design and prep the knowledge base so that its
structure  enables  query  selection  of  labeled  positive  (and,  with  repeatable  tech-
niques, negative) training sets for supervised machine learning. This pre-staging of
the knowledge sources eliminates 80% of the effort or more required for most super-
vised learning tasks. We also showed a virtuous circle of interaction between prop-
erly designed knowledge bases and a knowledge graph such that we can add new as-
sertions and facts to the knowledge base and improve its quality by a higher ratio of
true positives (see Figure 4-2). 

When repeatedly and purposefully carried out through many cycles, we can call
this  extreme knowledge supervision. In the case of KBpedia, remember, we already
have important structural splits between concepts, entities, events, attributes, exter-
nal relations, and representations, all organized according to the triadic universal cat-
egories of Charles Peirce, and further sub-typed by scores of modular typologies. Theo-
retically, we may use the intersection of any of these dimensions to create and train
supervised learners. Further, because of this richness of structure, we also can de-
velop better language parsers (see  Chapter 16) and reasoners (see next) to apply to
our  tasks.  Also,  combinations  of  these  features  through  inference  over  category
structures  is  a  patented  way18 that  brings  significant  efficiencies.19 Here  is  the
breadth of tasks to which we may apply extreme knowledge supervision:

 Entity identification (recognition) and extraction; 
 Attribute identification and extraction (‘slot filling’); 
 Relation identification and extraction; 
 Event identification and extraction; 
 Entity classifiers; 
 Phrase (n-gram) identification; 
 Entity linkers; 
 Mappers; 
 Topic clusterers; 
 Topic classifiers; 
 Disambiguators;
 Duplicates removal; 
 Semantic relatedness; 
 Inference and reasoning; 
 Sub-graph extraction; 
 Ontology matchers; 
 Ontology mappers; 
 Sentiment analysis; 
 Question answering; 
 Recommendation systems;
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 Language translation; 
 Multi-language versions; 
 Artificial writing; and 
 Ongoing knowledge base improvements and extensions. 

I have listed these areas in rough order from the simpler to the more complex analy-
ses.  Distant  supervision efforts  have concentrated on information extraction,  the
first items on the list. However, all are amenable to knowledge supervision with ML.

A vetted knowledge graph with millions of supporting instances also provides
some graph-level benefits. The first area is in ‘deep graphs.’20 The basic idea behind
‘deep graphs’ is to segregate graph nodes and edges into types, which form supern-
odes and superedges, respectively. In our terminology, ‘deep graph’ node types are
akin to types of similar  attributes, and edge types are akin to types of  relations. The
‘deep graph’ algorithm can partition these grouped types into lattices, which can be
intersected (combinations of nodes and edges) into representing deeper graph struc-
tures embedded in the initial graph. We can use these deeper graph structures as
new features for machine learning or other applications. A second area, important to
data interoperability, is in ‘symbol grounding’21 (also see next chapter). The useful-
ness of symbol grounding resides in associating symbol tokens as understood by the
computer with actual language meanings. Besides interoperability, such groundings
are crucial to natural language understanding.

The idea of large knowledge bases providing enabling technology for knowledge
sharing goes back at least 30 years.22 We are still in the early phases of such iterative
refinements of KBpedia. As this process continues, expect to see faster and more ac-
curate learners, the incorporation of still-additional knowledge sources and datasets,
and more sophisticated combinations of features and methods for extreme knowl-
edge supervision. Song and Roth provide an excellent current survey with hundreds
of references for how machine learning based on using world knowledge may create
such potentials.23

LOGIC AND REPRESENTATION

The previous section begins to scratch the surface for how KBpedia, as structured
using the guidelines of Peirce, may improve many knowledge-based tasks, especially
in the areas of natural language processing (NLP). I would now like to move beyond
this traditional baseline and address more fundamental questions of logic, reasoning,
and representation. These kinds of fundamental questions can take the use and con-
tributions of knowledge-based systems to new levels. The four initial topics we cover
in this section include automatic hypothesis generation, encapsulating KBpedia for
deep learning, measuring classifier performance, and the thermodynamics of repre-
sentation itself.

I do not touch on all of the logical potentials in this section. For example, the use
of fuzz  y logic  , or intensional logic, or methods of inducti  ve reasoning   provide enor-
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mous potential. Areas in non-classical logics such as three-valued logics24 or triadic
logic25 also deserve attention given their relationship to Peirce’s universal categories.
These are worthy topics for future attention.

Automatic Hypothesis Generation

One of Peirce’s signal contributions was to bring the importance of abductive rea-
soning to the fore in matters of epistemology. We discussed the now three classical
logical methods of deduction, induction, and abduction in  Chapter 8.  Deduction,  the
most widely employed method in the semantic Web and knowledge graphs, evaluates
correct placement by traceable logic chains, most of a hierarchical nature. Induction,
little used but with great promise for knowledge graphs, can look to shared or com-
mon features to make probable assertions.  Abduction,  which Peirce brought to the
fore, is the logic of new knowledge and scientific discovery. It is rarely used and not
well understood, some due to Peirce’s own changing views.

What Peirce early called abduction he later acknowledged was, in fact, induction.
Peirce’s confusion — and how he eventually worked out the issue — is instructive.
What Peirce initially called abduction is what we now call inference to the best expla-
nation (IBE). The basic idea is given a particular outcome, what is the most likely
path through the knowledge graph that leads to that outcome? It is a form of back-
ward chaining, where all parts of the syllogism are known, and therefore is a true in-
ferential  method.  Still,  many combinations  are  possible,  and reasoning backward
across available choices can soon become computationally intractable. Since in ab-
ductive reasoning we are ultimately seeking the explanation to a question or phe-
nomenon, this kind of IBE reasoning is quite valuable for knowledge graphs in gen-
eral26 and has applicability to instance characterizations in the ABox as well.27

Still, this view of abductive reasoning is but a part of what Peirce intended in his
mature formulation. Peirce was seeking no less than an understanding of how the
scientific method (purposeful inquiry) worked and its logic,  in a broad sense.  His
characterizations redound with expressions of ‘surprising facts,’ ‘flashes,’ ‘guesses,’
‘instinct,’ and ‘new knowledge.’ Dewey, a fellow pragmatist, saw similar things, but
particularly looked toward abductive reasoning also as a way to explicate learning.28

Peirce well understood the combinatorial problem and sought to understand how we
winnow through the myriad of options, recognizing the factors of economy, effort,
the likelihood of producing results, and all of those things we now understand as
‘pragmatic.’  Peirce understood there was a transitional space between perception
and hypothesis that held the key to this unique logic. Flach, throughout his many
writings, has noted the importance of abductive and inductive logic to the develop-
ment of scientific knowledge, and also usefully split Peirce’s ideas of abduction into
explanatory and confirmatory reasoning.29The nut to crack around abduction re-
sides in explanatory reasoning. Flach has attempted to refine Peirce’s conception of
explanatory reasoning into a form amenable to logical analysis.30

Prying open the heart of the logic of science is an exciting prospect. Kapitan made
a powerful argument for why IBE was not the nub of abductive reasoning, and sug-
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gested heuristic aids, while not inferences, could still be used to discover new knowl-
edge, often based on analogy.31 Kapitan also compiled eight reasons from Peirce for
what we should seek in a candidate hypothesis to explain an observation or surpris -
ing fact: 

1. The cost (in time, money, and effort) of testing the hypothesis (1901, CP 6.533;
1901, CP 7.230);

2. The intrinsic  value of the hypothesis  regarding its  ‘naturalness’  and ‘likeli-
hood’ (1901, CP 7.223);

3. The fact that the hypothesis can be readily broken down into and elements and
studies (1901, MS 692:33);

4. The simplicity  of  the hypothesis  (i.e.,  it  is  more readily  apprehended, more
facile, more natural or instinctive) (1902, MS L75:286; 1901, CP 6.532; 1908, CP
6.477);

5. The breadth of the hypothesis or the scope of its predictions (1902, MS L75:241,
457:37);

6. The ease with which we may falsify the hypothesis (1902, MS L75:285);

7. The testability of the hypothesis using severe tests based on ‘incredible predic-
tions’; and

8. The analogy of the hypothesis with familiar knowledge (1901, MS 873:16).

These guidelines feel incomplete. As part of his treatment of logic within the uni-
versal categories, Peirce held abductive reasoning as irreducible from the other two
forms of logic, deductive (2ns) and inductive (3ns). We are still missing the essence of
what makes abductive reasoning different. If we can truly get at the essence of the
scientific  method and purposeful  inquiry,  we will  have  unlocked a  tremendously
powerful door to new knowledge and discovery.

Kapitan held that missing piece was the creative, what it is that underlies knowl-
edge.32 He did not see this as an inferential step, but as one ‘suggested’ by the facts,
by a general cognition. Kapitan likened the transition from the perception that leads
to the idea as arising by analogy, from the unconscious. Selected quotes by Peirce
support parts of this interpretation.

More recently, Tschaepe questioned some of this interpretation, choosing to fo-
cus more on ‘guessing.’33 Successful guessing is both piecemeal and done in an or-
derly  fashion,  guided  by  ethics  and  aesthetics,  situated  to  logic  as  Peirce  did.
Tschaepe notes that a more metaphorical kind of logic is in play, and is indeed play-
ful (‘musement’ in Peirce’s term). Some scholars see it as likely based on the detec-
tion of patterns. Yes, the process is logical in a broad sense but is also a rapid surfac -
ing and evaluation of candidate explanations arising from patterned similarities and
metaphors.  This  critical  stage between perception and hypothesis  evaluation is  a
multi-factorial, synthetic, broad contrast of iconic options rapidly screened for prag-
matic likelihood. The methods of this critical phase in abduction appear more ori-
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ented to pattern matching than inference, which, in any case, appears weak. Once a
potential hypothesis is chosen for some level of evaluation, it becomes indexical.

KBpedia, or its derivatives, has the raw grist to begin feeding tests of these broad
factors.  In the near-  to  intermediate-term, backward chaining and IBE look quite
tractable within the KBpedia structure. Longer-term, however, getting at the true
‘guessing’ game involved with abductive reasoning — unique and broad — is where, I
think, some surprisingly useful payoffs may result where KBpedia may contribute.

Encapsulating KBpedia for Deep Learning

Geoffrey   Hinton   is a founder of deep learning. He and his team at the University
of Toronto helped promote the idea of backpropagation as a way to send weights to
adjust supervised labels to unsupervised layers in a neural network, with the increas-
ingly propagated layers leading to the term of deep learning. Deep learning is excep-
tionally effective for image and pattern recognition tasks, less so for natural lan-
guage. Unfortunately, the representations at all layers of deep learning are opaque,
meaning we can glean no meaning from the information at a given layer. This ‘black
box’ aspect is the weakness of deep learning. The concern, of course, with methods
that lack explanation is that it is hard to know how to make further improvements.
Inexplicable methods always seem to top out at some limit of performance. 

Hinton  likely  understands  these  limits  better  than  anyone.  Well  before  deep
learning became such a buzz phrase, Hinton and his team in 2011 were experiment-
ing with how to package features together to act as a unit during the deep learning
process.34 Hinton’s group has been more focused on image representations than text.
Still, this paper was the first mention of defining these feature packages as ‘capsules.’
Hinton has continued to work on this ‘capsule’ concept and has come to understand
that clean features about single entities are the best ones to include.35

‘Capsules’ may offer a path for better aggregating natural language features into
discernable packages. KBpedia’s unique way of organizing and classifying related fea-
ture types based on the universal categories may also offer a better way to create
meaningful ‘capsules’ for NLP. The ‘capsule’ approach, or other similar ways to pack-
age features into meaningful sets, may provide the missing technique for making
deep learning more understandable in the context of natural language.

Measuring Classifier Performance 

We presented statistical measures for binary classification and NLP tasks in Chap-
ter 14. We touched upon but did not elaborate two additional measures of  ROC and
AUC. ROC, the receiver operating characteristic (also called the relative operating
characteristic), is a curve that plots the true positive rate versus the false positive
rate at various settings. AUC measures the area under this curve and reduces the
standard error from the use of ROC alone. Researchers use these two measures to
compare  the  performance  of  machine  learning  classifiers,  though they  are  noisy
methods with challenges in interpretation.36 We need better performance measures.
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In the 1930s the Italian statistician Bruno de Finetti wrote much on probability,37

and  likely  was  instrumental  in  resurrecting  interest  in  Bayesian  conditional
probabilities. De Finetti developed a method of plotting three variables against one
another called the ternary plot. It has found wide use in genetics, for example, in
plotting the frequency of diploid genes (AA – Aa – aa) against one another using the
display within an equilateral triangle, which can, for example, capture the distribu-
tion of the Hardy-Weinberg frequency of a gene, a standard measure.

About  15  years  ago,  the  Spanish  statistician  Valverde-Albacete  and  his  team
adopted the de Finetti ternary plot to provide a more accurate means to compare
machine learning classifiers. The plot uses the three corresponding values of change
in entropy, versus what they termed the variation of information, and the  mutual
information surfaced by the classifier.38 The group calls this display the ‘entropy tri-
angle.’ One can see a striking resemblance of these de Finetti entropy triangles to the
semiotic triangles of Peirce (see Figure 2-1). Further, the relation to Shannon entropy
and  the  potential  correspondences  to  object-representamen-interpretant  at  the
apexes  also  draws  attention.  Though  tentative,  intuition  about  these  correspon-
dences suggests two possible lines of inquiry. First, we may apply de Finetti ternary
plots to a more quantitative treatment of the Peircean sign representation. Second,
the existing entropy calculations and insights might have either a Peircean interpre-
tation or applicability to signs about Shannon information theoretics. For now, we
should view these  correspondences  as  wholly  speculative,  but  thought-provoking
nonetheless. Whether these intuitions bear fruit, the apparent superiority of the en-
tropy triangle as a measure of classifier performance remains.

Thermodynamics of Representation

The close relation of information to energy as discussed in  Chapter 2 — and the
findings of Landauer showing the energetic and physical aspects of information —
provides possible guidance for how we should think about and model knowledge rep-
resentations going forward. Susanne Still has taken this viewpoint to heart, and rou-
tinely uses the thermodynamic and informational aspects of information engines in
her work.39 This area, too, applies to measuring classifier performance, as well as
other relevant topics.

For example, Still has shown information engines to require predictive inference
to function well, which requires memory and favors a minimum of redundant infor-
mation. In non-equilibrium conditions (namely, life), the most favored information
engine is that which is most efficient in predictive power for a given level of mem -
ory. Of course, no information engine may extract more work than is contained in its
useful informational inputs, and the best engines use more available information and
dissipate less. (Dissipation under non-equilibrium conditions is average work minus
the change in nonequilibrium free energy.) Still has also related her work to learning
theory,40 data representations, 41 and information bottlenecks.42

The idea of information bottlenecks to test for better data representations or bet-
ter predictive inferences is but one method where we may exploit the convergence of
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information theory and knowledge. It is clear that we can apply these methods of en-
tropy measurement to help screen data representations and models and even to test
model parameters. These kinds of tests are hardly standard in ontology building and
maintenance, though such efforts using the proxies of information engines provide a
useful means for doing so.

We can apply these same perspectives and tests to evaluate the use of Peirce’s
universal categories as an organizational framework for knowledge graphs. We also
should consider monitoring reference concepts by use to discover over-specified or
redundant information in our systems. As was pioneered in biomedical research with
‘knock-out’ mice, we can remove selected pieces or portions of our knowledge graphs
to measure their after and before information theoretic contributions. 

As we pull together more evidence for the linkage between information theory
and various entropy and free energy measures, we will undoubtedly discover more
insights regarding composition and construction of our knowledge systems to make
them more efficient. The beautiful thing about information-theoretic metrics is that
we can negate empty arguments about philosophy or ideology and focus on what
works with the most efficiency, a clear reflection of Peirce’s admonitions for pragma-
tism. Routinely testing for information bottlenecks should also aid our ability to con-
tinue to refine better performing predictive inferences. Still states, 

“Predictive inference can be interpreted as a strategy for effective and efficient com-
munication: past experiences are compressed into a representation that is maximally
informative about future experiences. The information bottleneck (IB) framework can
thus be applied, either in a direct way, or in its recursive form (RIB). Both methods
find, asymptotically, the causal state partition, i.e., minimal sufficient statistics. RIB
additionally recovers, asymptotically, the ɛ-machine, which is a maximally predictive
and minimally complex deterministic HMM [hidden Markov model] , believed  to be
the best predictive description of a stochastic process that can be extracted from the
data alone.” (p. 985)

It appears pretty evident that we should adhere more to energetic factors (dissipa-
tion,  entropy)  in  evaluating alternatives.  These methods  may also help  us  better
quantify the benefits of organizing our knowledge structures using Peirce’s universal
categories and typologies as compared to traditional dichotomous representations.

POTENTIAL METHODS AND APPLICATIONS

New applications and uses for knowledge graphs remain untapped. We have listed
some of these areas as potential applications for years, such as self-service business
intelligence or semantic learning. We conclude this section and chapter by discussing
the relation of Peirce’s ideas and guidance to nature and questions of the natural
world. 
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Self-Service Business Intelligence

I have been hearing about self-service business intelligence for more than two
decades, yet it remains as elusive as ever. The definitions have changed over time
and now include concepts like ‘big data,’ but the basic idea is to enable users, who
lack IT or coding skills, to access enterprise data for their queries and reports.43 The
genesis of the idea arises from the promise of placing data analytics directly in the
hands of the users who need it, matched with frustrations for how long specific re-
quests to IT for queries or reports take to fulfill.44 Part of the problem in achieving
this ideal is parties tackled early attempts at self-service BI as some new application,
only ‘dumbed down’ with slick user interfaces (UIs) to overcome the lack of comput-
ing skills by its users. In retrospect, it is not hard to see how attempts to fulfill this
need settled upon supplying still another application as a separate product. Enter-
prise-level applications were the rage over those same decades. Naturally, to address
the need of business analysts, the trick was to modify the business intelligence tools,
such as they were, used by IT and then re-package them for easier use. The joke
through at least the 1990s was that an ‘executive information system’ was the one
with the big buttons with the big labels.

Those older visions fail for at least two reasons. The first reason is to consider
business intelligence as some form of separate application. Early attempts at busi-
ness intelligence or data warehousing failed and disappointed at high rates. We dis-
cussed at length in  Chapters 3 and 4 the challenges in data interoperability and im-
pediments to information access and sharing. The general challenges of business in-
telligence and knowledge management remain unsolved. The second reason for fail-
ure is to consider the hurdle for non-technical users as mainly one of user interfaces.
Sure, UI considerations are important. However, the real hurdles are fitting with ex-
isting work tasks and flows.  The users of business intelligence create that intelli-
gence. These knowledge workers must be involved in feeding and adding to the en-
terprise knowledge stores, as well as tapping them. Knowledge workers should stew-
ard their knowledge assets.  This imperative needs to  put users in the knowledge
recording  role,  as  well  as  the  knowledge  using  one.  Knowledge  is  not  an  after-
thought, but part-and-parcel of the daily activities seamlessly integrated into cur-
rent work tasks and flows.

Though KBpedia and its structure are well-suited to knowledge capture and use,
the question of self-service goes beyond that. Self-service is not a matter of user in-
terfaces and buttons, though at some point those items are worthy of attention, but a
matter  of  mindset  and making knowledge  management  integral  to  current  work
tasks. As we discussed in Chapter 12, this approach includes being attentive to work-
flows and piecing apart specific tasks such that they can integrate well with current
daily activities (see further Chapter 16). As for knowledge creation, we must integrate
new concepts and add and modify instances as we encounter them. These activities
occur while researching online, writing or reading documents, or while interacting
with co-workers and colleagues.

We need to deploy our specific KM apps where we engage in these activities — be
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they browsers, word processors, spreadsheets, calendar systems, or chat. BI systems
would benefit from a similar distribution with standard work tasks. We want to en-
courage continuous access and constant availability. In these senses, we solve the UI
challenge more by embedding knowledge functionality in existing applications than
by dashboards or big buttons. While we have not been prescriptive in this book, I do
think the guidelines we offer  provide pragmatic  approaches to  adopt self-service
ways in your organization.

Semantic Learning 

Many aspects of what some anticipated as a semantic learning Web by 2020 have
failed to materialize.45 We have tried and used both latent and explicit ways to learn
from text. We do not have multiple knowledge bases talking to each other or anno-
tated or guided educational resources or commercial semantic browsers. We lack the
connectedness portions of the vision. We have achieved talking to personal devices
and leveraging massive knowledge bases like Wikipedia, mostly through supervised
means, but the learning and interoperability aspects still appear weak. The lack of
connection or connected learning sources is not one of technology or standards but
provenance and authoritativeness. We have learned in our two decades of using the
Web that it is a medium as prone to spamming and misuse as it is for access and con-
venience. We have found that the latent methods, applied to either text or images, do
not perform as well as supervised methods. Still, though, even with supervised learn-
ing, we do not see much active learning or connectivity (defined as two separately
maintained sources interacting automatically with one another). 

We will not see marked improvements in latent semantic indexing -- and unsu-
pervised methods in general -- until we have better parts-of-text segmentation and
classification. We need a true foundational set of semantic primitives. I believe Peirce
offers such (see next chapter). We have not yet tested this premise. Further, with its
graph structures and inherent connectedness,  we also have some exciting graph-
learning methods that we can apply to KBpedia and its knowledge bases. The perhaps
best-known method for conducting unsupervised learning on a sub-graph is the  k-
nearest  neighbor method,  with  the  latent  Dirichlet  allocation and  conditional
random fields (CRF)  methods growing in popularity.  We also have emerging sub-
graph alternatives. With KBpedia’s rich feature set, we have many additional options
for  discovering  better-performing  semantic  learning.  Whether  the  approach  is
Peircean or not, we likely need to see a more grounded set of semantic primitives
emerge before we see production-grade performance with latent indexing or vectors.
Without these primitives, there remains too much of a ‘black box’ aspect for these
methods, similar to what we see with the opaque explanations for deep learning.

We do, however, have adequate means for production-grade methods for mean-
ingful semantic connections using supervised learning with human editorial vetting.
We need to take care of what resources we select for our learning purposes. We need
automated ways to screen through the myriad of candidates. Then, we need to re-
view those manually that remain ambiguous after tests, feeding our final selections
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back into the system to improve the performance of the learner when next used. 
KBpedia thus is a potential contributor to semantic learning in two ways. The first

way is to move toward a more logical, defensible set of semantic primitives for char-
acterizing and indexing text, perhaps including unsupervised methods. The second
way is by mindset and example, where builds and testing are constant against an al -
ready coherent structure.  A key insight is  in how to construct and maintain our
knowledge structures. Users of the open Web, as is,  do not trust it  as a coherent
knowledge source. Still, we will use quality sources, determined by editorial over-
sight or supplied by trusted brands. We need to discriminate and then depend on
vetted resources, like from industry standards groups or proven resources like the
Wikimedia  properties.  A  key  lesson  is  that  we  cannot  fully  automate  the  entire
process  of  discovery,  harvesting,  vetting and connecting;  humans must be in  the
loop, only accepting what meets editorial standards.

Nature As An Information Processor

It is clear that information is central to the idea of life (through DNA) and lan-
guage  and  communications  (through  symbols).  We also  saw  in  the  discussion  in
Chapter  2 that Landauer had shown the physical  nature of  information and from
Jaynes onward that many had pointed to the energetic nature of information. These
indicators suggest that nature acts as an information processor.

The least controversial interpretation of information processing in nature occurs
through genetic and cultural information. This overlap has led Sweller and Sweller to
posit  five  common principals  of  natural  information processing  systems,  which I
have taken the liberty to edit slightly:46

Principles Cognitive Case Evolutionary Case Function

Store information Long-term memory Genome Store information for 
indefinite periods

Borrow and reorganize Transfer information 
to long-term memory

Transfer information 
to the genome

Permit the rapid build-
ing of an information 
store

Random genesis Create novel ideas Create novel genetic 
codes

Create novel informa-
tion

Narrow limits of change Working memory Epigenetic system re-
lated to environmental
information

Input environmental 
information to the 
store

Organize and link Long-term working 
memory

Epigenetic system re-
lated to genetic infor-
mation

Use information from 
the information store

Table 15-1: Natural Information Processing System Principles

Wiesner — after reviewing developments in dynamical systems theory, informa-
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tion theory, physics, and computation theory — goes much further.47 She claims that
formal language theory, such as the examples of transformations provided by Noam
Chomsky,48 provides the key to understanding information processing in natural sys-
tems. Her synthesis leads to methods based on how quantum processes store and ma-
nipulate information, what Wiesner calls ‘intrinsic quantum computation.’ 

In a broader sense, the mathematician Burgin and his co-authors over the years
have been looking at commonalities and classification of various kinds of computa-
tional algorithms (for example, see49). Burgin claims the basic structure of the world
is triadic (physical, structural, mental), which corresponds to Plato’s triad (material,
ideas/forms, mental) or may be related to Peirce's semiotic sign triad of object, sign,
and interpretant. This existential triad leads Burgin and Dodig-Crnkovic to propose
the three following types of computations:49

1. Physical or embodied (object) computations;

2. Abstract or structural (sign) computations; or

3. Mental or cognitive (interpretant) computations.

The authors note that the abstract or mental forms are themselves based on physical
or embodied computations. In any case, the authors stress that we need a much bet-
ter understanding of computation as an activity of information processing.

Quax, I believe, in his 2014 Ph.D. thesis50 and associated papers, may have done
just that. Returning to the roots of computation in Shannon information theory, as
discussed in  Chapter 2, Quax notes that the topological analysis of network interac-
tions, while often posited as an explanatory basis, has proven insufficient to identify
which nodes “drive the state” of networks.51 Their idea, which supplements the topo-
logical relationships, is grounded in Shannon entropy and mutual information. Infor-
mation theory is often applied to statistical inference when an external observer de-
scribes the state of a system. As applied to dynamical systems, such as knowledge
systems, each component of the system (e.g., a chunk of information) is an observer
that stores the information and records state. 

Quax  and  his  co-authors  derive  two  dynamic  measures  from  these  aspects  of
Shannon information. First, the authors calculate the influence of this information as
it moves further from the source node, incurring losses on the way. They call this the
‘information dissipation length.’ (They measure IDL to the 50% dissipation level since
the decay rate is asymptotic with a long tail.) IDL is a measure of the size of the sub-
system that is affected by a particular element. IDL is somewhat akin to ‘influence’ in
traditional graph measures that lack dynamic considerations (that is, are only topo-
logical). Second, the authors also calculate how the usefulness of the information dis-
sipates over time. IDT is a proxy for how long the network remembers the particular
state of a node, another measure of its influence. 

This combination of structural (topographic) and dynamic (IDL and IDT) may not
be exactly the right mix, but it does show how basing the analysis on information
theoretics offers up new ways for understanding the nature of graphs and their in-
teractions over time. For example, one finding is that it is intermediate players, not

319



A KNOWLEDGE REPRESENTATION PRACTIONARY

the central hubs or most popular nodes, that may have the most influence on dynam-
ical processes within complex networks.52 We may apply IDL and IDT to any complex,
dynamic network. Mutual information (I) is that which nodes share. Here is a  two-
node example:

‘Deep  information  networks’  use  somewhat  similar  information-theoretic  ap-
proaches to reduce the dimensionality of knowledge graphs,53 though with poten-
tially better understandability of the intermediate layers than deep learning. As we
apply such techniques to more systems, we should gain further insights to improve
our predictive power, perhaps getting to such seemingly intractable questions such
as emergence, state transitions, or self-organization. 

We see the potential relatedness or interactions between Peirce’s semiosis, uni-
versal  categories,  and information theory.  If  we find that Peirce’s  universal  cate-
gories indeed capture some fundamental truths about nature, for which some combi-
nation of the categories and information theory provides insight, then we can begin
to apply lessons from natural science to the questions of language, knowledge, and
representation. Each subsequent insight will feedback upon those that came before
to improve our ability to model and predict our natural world.

Gaia Hypothesis Test

The chemist  James Lovelock first posed the  Gaia hypothesis1 in the 1970s, soon

1 Gaia   was the Greek goddess who personified Earth.
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getting collaborative support from the microbiologist Lynn Margulis.1 They hypothe-
sized that life is  an integral part of the Earth’s development. Organisms have co-
evolved with changes in Earth geology and chemistry and climate; high oxygen lev-
els, which are highly reductive, grew in the atmosphere due to the presence of life;
life adapted to salinity changes due to salt run-off from terrestrial sources; and a
complete weave of interacting forces and effects intertwined. The hypothesis has led
some to consider the Earth a form of ‘living thing.’ Though derided when first postu-
lated, advocates have refined the hypothesis to reflect emerging science better and
scientists now largely embrace the idea of an evolving and interacting biosphere.

We also see another trend. The initial  understanding of entropy as something
that led to disorder caused thoughtful physicists,  such as  Erwin Schrödinger, dis-
cussed in Chapter 2, to posit explanations in the 1940s for how life did not violate the
2nd law of thermodynamics. That subject, too, has evolved much, whereas now a sig-
nificant portion of scientists see entropy as operating in either equilibrium or non-
equilibrium circumstances. The Earth, with massive influxes of solar radiation and
the evolution of life that has created its ‘Gaia-like’ effects, is the quintessential non-
equilibrium case.

Under non-equilibrium conditions with massive external influxes of energy, the
equilibration principle, what one might also think of as selective pressure, is to dissi-
pate this free energy as rapidly as possible. That idea, in turn, promoted on both
statistical mechanics and biological terms by some, is known as the maximum en-
tropy production (MEP) principle.54 The principle favors structures that utilize and
then dissipate free energy fastest and most efficiently. Ludwig Boltzmann, the expli-
cator of  entropy and statistical mechanics, is now praised by some for  quantifying
what is not (that is, entropy), akin to the contribution of the Arabian mathematicians
who invented the number zero.55

Researchers have applied MEP to the Earth at planetary scale56 and related it to
more prosaic observations like water flows in soils.57 Kleidon, in a comprehensive
treatment  of  this  topic  with  wonderful  illustrations  of  various  global  fluxes,
stated,“This  seeming contradiction [of  standard interpretations of  entropy]  is  re-
solved by considering planet Earth as a coupled, hierarchical and evolving non-equi-
librium thermodynamic system that has been substantially altered by the input of
free energy generated by photosynthetic life.” 58 

Herrmann-Pillath has woven these threads of the Gaia hypothesis, MEP, Charles
Peirce’s semiotics, and other factors into a complete speculation.59 He includes the
‘fourth law of thermodynamics’ from Stuart Kauffman,60 another theorist on the ori-
gin of life, who posed the role of work and the “tendency for self-construction bio-
spheres to construct their own workspace.” (p. 244) This view bridges from Peirce’s
statements about semiosis and its applicability to crystals and bees. We call the appli-
cation to living organisms  biosemiotics, and for inanimate or broader applications,
such as what Herrmann-Pillath proposes, ‘physiosemiosis.’ This term arises from the
proposition that “the biosphere is a system of generating, processing and storing in-
formation, thus directly treating information as a physical phenomenon,” and fol-

1 I discuss Margulis in a different context in Chapter 3.
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lows  the triadic  semiotic  model.  A  few researchers  have speculated  that  Peirce’s
ideas of semiosis may even extend as far as the formation of matter after the  Big
Bang,61 though it would be 15 years after Peirce’s death before Hubble discovered the
redshift. Still, Peirce intended his views on semiosis to infuse nature.

 Peirce’s advocacy that first, second, and third are the necessary and sufficient
building blocks for all of reality may provide some missing insight into these basic
questions of evolution and cosmology. His placement of randomness and chance into
Firstness appears to conform with what we continue to learn about what is possible
and where it arises. Peirce’s prescience about signs, the universal categories, and the
roles of chance and continuity quite possibly were truly cosmic. If indeed Peirce did
grok the nature of nature at its most fundamental levels, then how we can apply his
insights to our understanding of existence and reality is but at the beginning stages.
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