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TESTING AND BEST PRACTICES

uilds,  in  a  knowledge  environment,  should  be  responsive  to  the  nature  of
knowledge, open and always changing. This knowledge environment includes

the knowledge graph, plus its knowledge bases, and its management and analysis
tools. To maintain the integrity of this structure going forward, we must test the
structure for consistency and coherence after every batch of updates or changes.
This constant requirement demands that the entire structure be re-compiled and
tested quickly and frequently. Constant revision is the only correct mindset, subject
to user input and scrutiny, for which we need tools and guidance to do so in an intel-
ligent way. As we wrap up our discussion on building a KM system, we need to give
equal weight to the practical activities that keep our knowledge structures relevant.

B

We will  start  the discussion by introducing two straightforward metrics,  from
which all of our statistical tests flow.1 From these we derive many useful and com-
mon statistics that are good to know, and easy to calculate. Our approach leverages
the knowledge aspects, including good populations of type instances, to continue to
improve the quality of the domain representation. Enhanced domain representations
improve the subsequent ability to test new candidate representations, all in a virtu-
ous circle.  To make these efforts  practical,  we need scripts for both building the
structure and testing its integrity. We want the control of these skills to continue to
migrate to knowledge workers. Knowledge is best captured by those discovering it.
These guidances then lead us to the question of best  practices,  especially for the
build steps covered in Chapter 13. As we wrap up this chapter, we also conclude our
discussion of building the knowledge representation system. This chapter completes
the stage of the why and wherefore of a KR system, enabling us in the next part to
tackle the question of applications and potential practical uses.

A PRIMER ON KNOWLEDGE STATISTICS

Semantics is a funny thing. All professionals come to know that communication
with their peers and external audiences requires accuracy in how to express things.
Even with such attentiveness, communications sometimes go awry. It turns out that
background, perspective, and context can all act to switch circuits at the point of in-
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teraction. Despite, and probably because of, our predilection as a species to classify
and describe things, all from different viewpoints, we can often communicate with
terms and language that convey to others  something different from what we in-
tended. Alas! This reality is why, I suspect, we have embraced as a species things like
dictionaries,  thesauri,  encyclopedias,  specifications,  standards,  sacred  tracts,  and
such, to help codify what our expressions mean in a given context. So, yes, while
sometimes we are sloppy in language and elocution, many misunderstandings be-
tween parties are also a result of the difference in perspective.

When we process  information to identify relations or extract  entities,  to  type
them or classify them, or to fill out their attributes, we need measures to gauge how
well our algorithms and tests work, all attentive to providing adequate context and
perspective. These very same measures can also tell us whether our attempts to im-
prove them are working or not. We also use these measures, in turn, to establish ef-
fective ‘gold standar  ds  ’ and create positive and negative training sets for machine
learning. Still, despite their importance, it is not always easy to explain these mea-
sures. The truth is, sometimes we don’t adequately understand these measures.

Two Essential Metrics, Four Possible Values

In our context, we can see a couple of differences from traditional scientific hy-
pothesis testing.2 The problems we are dealing with in information retrieval (IR), nat-
ural language understanding or processing (NLP), and machine learning (ML) are all
statistical classification problems, specifically in binary classification.1 For example,
is a given text token an entity or not? What type amongst a discrete set is it? Does
the token belong to a given classification or not? Binary classification makes it con-
siderably easier to posit an alternative hypothesis and the shape of its distribution.
What makes it binary is the decision as to whether a given result is correct or not.
We now have a different set of distributions and tests from more common normal
distributions. The most common scoring methods to gauge the ‘accuracy’ of natural
language or supervised machine learning analysis involves statistical tests based on
the ideas of two essential metrics: negatives or positives, true or false. We can mea-
sure both of these metrics by scoring correct ‘hits’ for predictions compared to a
‘gold standard’ of known results. This gold standard provides a representative sam-
ple of what our actual population looks like, one we have characterized in advance.
We can use this same gold standard repeatedly to gauge improvements in our test
procedures. I talk more about gold standards at the conclusion of this section.

 Statistical tests will always involve a trade-off between the level of false positives
(in which a non-match is declared a match) and the level of false negatives (in which
an actual match is not detected).3 Let’s see if we can simplify our recognition and un-
derstanding of these conditions:

1. TN / True Negative: case was negative and predicted negative 

1 I refer here to  statistical classification; clearly, language meanings are not binary but nuanced. 
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2. TP / True Positive: case was positive and predicted positive 

3. FN / False Negative: case was positive but predicted negative 

4. FP / False Positive: case was negative but predicted positive.

Combining these thoughts leads to a much simpler matrix, sometimes called a
confusion matrix, for laying out the true/false, positive/negative characterizations:

Correctness
Test Assertion

Positive Negative

True TP
True Positive

TN
True Negative

False FP
False Positive

FN
False Negative

Table 14-1: Two Essential Metrics, Four Possible Values

As we can see, ‘positive’ and ‘negative’ are simply the assertions (predictions) arising
from our test algorithm of whether or not there is a match or a ‘hit.’ ‘True’ and ‘false’
merely indicate whether these assertions proved correct or not as determined by
gold standards or training sets. A false positive is a false alarm, a ‘crying wolf’; a false
negative is a missed result. Thus, all true results are correct; all false results are in-
correct. More formally, we can now define these four values as:

 TP = test assertion is positive and correct; standard provides labels for instances
of the same types as in the target domain; manually scored; test identifies the
same entity as in the gold standard;

 FP = test assertion is positive but incorrect; manually scored for test runs based
on the current configuration; test indicates as positive, but deemed not true;
test identifies a different entity than what is in the gold standard (including no
entity);

 TN = test assertion is negative and correct; standard provides somewhat similar
or  ambiguous  instances  from  disjoint  types  labeled  as  negative;  manually
scored; test identifies no entity, gold standard has no entity; and 

 FN =  test  assertion is  negative and incorrect;  manually  scored for  test  runs
based on the current configuration; test indicates as negative, but deemed not
true; test identifies no entity, but gold standard has one. 

These measures are  sufficient  to  calculate  most  of  the relevant  statistics  for our
knowledge management and representation purposes.

Conversely, we can relate these two metrics to the branch of statistics known as
statistical hypothesis testing. This testing is likely the statistics that you were taught
in school. In hypothesis testing, we begin with a hypothesis about what might be go-
ing on concerning a problem or issue, but for which we do not know the cause or
truth. After reviewing some observations, we formulate a hypothesis that some fac-
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tor A is  affecting or influencing factor B. We then formulate a mirror-image  null
hypothesis that specifies that factor A does not affect factor B; this is what we test
using statistical hypothesis testing. The null hypothesis is what we assume the world
in our problem context looks like, absent from our test. If the test of our formulated
hypothesis does not affect that assumed distribution, then we reject our alternative
(meaning our initial hypothesis fails, and we keep the null explanation).

We make assumptions from our sample about the distribution of the population,
which enables us to choose a  statistical model that captures the shape of assumed
probable results for our measurement sample. These shapes or distributions may be
normal (bell-shaped or  Gaussian),  binomial,  power law, or  many others. These as-
sumptions  about  populations  and  distribution  shapes  then  tell  us  what  kind  of
statistical test(s) to perform. (Misunderstanding the actual shape of the distribution
of a population is one of the major sources of error in statistical analysis.) Different
tests may also give us more or less statistical power to test the null hypothesis, which
is that chance results will match the assumed distribution. Different tests may give
us more than one test statistic to measure variance from the null hypothesis.

We then apply our test and measure and collect our sample from the population,
with  random or other  statistical sampling necessary so as not to skew results, and
compare the distribution of these results to our assumed model and test statistic(s).
We reject the null hypothesis if we observe significant differences from the expected
shape in our sample at a high level of confidence. If we reject the null hypothesis, but
in fact it was correct, we call that a Type I error, or a false positive (FP), the same as
FP in a binary classification. If we accept the null hypothesis, we reject the alterna-
tive hypothesis that some factor A is affecting or influencing factor B. However, if we
accept a null hypothesis that is not correct, we term that a Type II error, or a false
negative (FN), the same as FN in a binary classification. Statisticians often apply com-
mon rules for how differences and level of confidence may lead to rejection of the
null hypothesis, thereby leading us to accept the alternative hypothesis that factor A
is affecting or influencing factor B.

The binary classification TP v FP v TN v FN approach is better than the statistical
hypothesis approach because it explicitly recognizes either the sampling method or
our test may be in error. Further, the TP v FP v TN v FN approach is also easier to ex-
plain and understand.

Many Useful Statistics

Armed with these four characterizations — true positive, false positive, true nega-
tive, false negative — we now can calculate nearly all essential statistical measures.
Most of these measures also have exact analogs in standard statistics. The first met-
ric  captures the concept of  coverage.  In standard statistics,  this measure is  called
sensitivity; in IR and NLP contexts it is called  recall.  It is the fraction of the docu-
ments that are relevant to the query that is successfully retrieved. Recall measures
the ‘hit’ rate for identifying true positives out of all potential positives, and we also
call it the true positive rate, or TPR:
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A high recall value, expressed as a fraction of 1.00 or a percentage, means the test
has a high ‘yield’ for identifying positive results. We measure it as  true positives di-
vided by all potential positives in the corpus.

Precision is the complementary measure to recall, in that it is a measure of how ef-
ficient the system is to make correct identifications from the positive ones. Precision
is the fraction of retrieved documents that are relevant to the query. We measure it
as true positives divided by all measured positives (true and false):

 

High precision indicates a high percentage of true positives compared to all positive
results. Precision is something, then, of a quality measure, which we express as a frac-
tion of 1.00 or a percentage. It provides a positive predictive value, as defined as the
proportion of the true positives against all the positive results (both true positives
and false positives). So, we can see that recall gives us a measure as to the breadth of
the hits captured, while precision is a statement of whether our hits are correct or
not. Note also that false positives are a proper focus of attention in test development
because they directly lower precision and the efficiency of the test.

One of  the preferred overall  measures of  IR and NLP statistics  is  the F-score,
which is the adjusted (beta) mean of precision and recall. It recognizes that precision
and recall are complementary and linked. The general formula for positive real  is:β is:

which we can express for TP, FN, and FP as:

In many cases, the  harmonic mean is used, which means a beta of 1, which is
called also called the F1 statistic or the F1 score:

However, F1 displays a tension. Either precision or recall may be improved to achieve
an improvement in F1, but with divergent benefits or effects. What is more highly

valued? Yield? Quality? These choices dictate what kinds of tests and areas of im-
provement need to receive focus. As a result, the weight of beta can be adjusted to fa-
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vor either precision or recall. Two other commonly used F measures are the F2 mea-

sure, which weights recall higher than precision, and the F0.5 measure, which puts

more emphasis on precision than recall.
A  ccuracy   is another metric that can factor into our evaluations, though we use it

less in the IR and NLP realm. Accuracy is a statistical measure of how well a binary
classification test correctly identifies a condition. We calculate it as the sum of true
positives and true negatives divided by the total population (TP + FP + TN + FN):

 
An accuracy of 100% means that the measured are the same as the given values.

All of the measures above only require the measurement of false and true, posi-
tive and negative, as do a variety of predictive values and likelihood ratios. We may
also calculate r  elevance  , prevalence  ,   and specificity, which use these same metrics in
combination with the total population. By bringing in some other rather simple met-
rics,  we  can  expand  this  statistical  base  to  cover  such  measures  as  information
entropy,  statistical  inference,  pointwise  mutual  information,  variation  of
information, uncertainty coefficients, information gain, AUCs, and ROCs. All of these
still bridge from the basic four values that we need to measure of TP, FP, FN, and TN.
We may accommodate these additional tests by keeping track of distributions, calcu-
lating confidence intervals, tracking joint or conditional distributions, or summing
the area under the distribution curve, in addition to our standard four measures.

We can summarize across all of these basic statistical tests on a single chart, cour-
tesy of a template on Wikipedia,4 for which I have taken some minor liberties. I show
this summary chart of IR and NLP statistical tests in Table 14-2 on the following page.

Working Toward ‘Gold Standards’

Academic researchers in natural language processing (NLP) and machine learning
(ML) commonly compare the results of their studies to benchmark, reference stan-
dards.  A  gold  standard is  a  reference,  benchmark test  set  where we have  already
scored results, with a minimum (if not zero) amount of false positives or false negatives.
We should also include true negative results in a proper gold standard approximate to
the likely ratio expected in the overall population to improve overall accuracy.5 Gold
standards that themselves contain false positives and false negatives, by definition,
immediately introduce errors, as we noted for Type I and Type II errors above. A
skewed baseline makes it difficult to test and refine existing IR and NLP algorithms.
Moreover, because gold standards also often inform training sets, errors there prop-
agate into errors in machine learning. The requirement to compare research results
to existing gold standards provides an empirical basis for how the new method com-
pares to existing ones,  and by how much.  Precision,  recall,  and the combined  F1
score are the most prominent amongst these statistical measures.
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We often refer to specific standards, such as the  NYT Annotated Corpus or the
Penn  Treebank,6 as gold standards because they have been in public use for some
time, with many errors edited from the systems. Vetted standards such as these may
have inter-annotator agreements in the range of 80% to 90%. More typical use cases
in biomedical notes7 and encyclopedic topics8 tend to show inter-annotator agree-
ments in the range of 75% to 80%. While a claimed accuracy of even, say, 95% sounds
impressive, applied to a large knowledge graph such as KBpedia, with its 55,000 con-
cepts, translates into 2,750 concept misassignments (actually, the problem is many
orders of magnitude greater than that when we include all assertions). That sounds
like a lot, and it is. Misassignments of some nature occur within any standard. When
they occur, they are sometimes glaringly obvious, like being out of plumb. It is pretty
easy to find most errors in most systems. Still, for the sake of argument, let’s accept
we have applied a method that has a claimed accuracy of 95%. Remember, this is a
measure applied only to the gold standard. If we take the high-end of the inter-anno-
tator agreements for domain standards noted above, namely 80%, then we have this
overall accuracy of the system:

Whoa! Now, using this expanded perspective, for a candidate knowledge graph the
size of KBpedia — that is, about 55,000 items — we could see as many as 13,200 con-
cept misassignments (again, orders of magnitude greater for all assertions). Those
numbers now sound huge, and they are. They are unacceptable.

A couple of crucial implications result from this analysis. First, we need to take a
holistic view of the error sources across the analysis path, including and most espe-
cially the reference standards. (They are, more often than not, the weak link in the
analysis path.) Second, we want to get the accuracy of reference standards as high as
possible. Thus, we can see many areas by which gold standards may need attention:

1. They may contain false positives;

2. They may contain false negatives; 

3. They have variable inter-annotator agreement; 

4. They have variable mechanisms, most with none, for editing and updating the
labels;

5. They may lack sufficient inclusion of true negatives; or 

6. They may derive from an out-of-context domain or circumstance. 

You should be aware of these potential sources of error to improve test foundations.
An integral part of any knowledge representation or management effort must be

to create gold standards for continuous quality improvements. The domain coverage
inevitably  requires  new  entity  or  relation  recognizers,  or  the  mapping  of  new
datasets. The nature of the content at hand may range from tweets to ads to Web
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pages or portions or academic papers, with specific tests and recognizers from copy-
rights to section headings informing new learners. Every engagement requires refer-
ence standards. One effort might favor instance records over concepts. Creating gold
standards efficiently with a high degree of accuracy is a competitive differentiator.

We may use each type and its instances in KBpedia as a training set for learners.
We can continue to improve the accuracy of instance assignments for each type by
testing shared attributes or neighbors or type inheritance, plus errors fixed after in-
spection. One key to growing a consistent knowledge graph over time is  to apply
these virtuous improvements. Once you create a gold standard, you then run your
current test regimes against it  when you run your same tests against  unknowns.
Preferably, of course, the gold standard only includes true positives and true nega-
tives (that is, the gold standard is the basis for judging ‘correctness’; see confusion
matrix  above).  If  it  does  not,  misassignments,  when  encountered,  must  be  fixed,
preferably as part of existing workflows (see Chapter 12). 

More  accurate  standards  and  training  sets  lead to  improved  IR  and ML algo-
rithms, feeding the virtuous circle in  knowledge-based    artificial intelligence   (KBAI)
(see Figure 4-2). Continuing to iterate better knowledge bases and validation datasets
is a driving factor in improving both the yield and quality from the KBs. KBAI, then,
is a practice based on a curated knowledge base eating its tail, working through cy-
cles  of  consistency and logic  testing to  reduce misassignments,  while  continually
seeking to expand structure and coverage. Adding and testing structure or mapping
to new structures and datasets continually gets easier, and also produces a network
effect. These efforts enable us to partition the knowledge structure efficiently for
training specific recognizers, classifiers, and learners, while also providing a logical
reference structure for adding new data and structure.

We then use this basic structure — importantly supplemented by the domain con-
cepts and entities relevant to the domain at hand — to create reference structures
for training the target recognizers, classifiers, and learners. The process of testing
and adding structure identifies previously hidden inconsistencies. As corrected, the
overall accuracy of the knowledge structure to act in a reference mode increases.
Through straightforward SPARQL queries, we can retrieve both positive and negative
training sets for machine learning. Clean, vetted gold standards and training sets are
thus a critical component to improve our knowledge bases going forward.9 We need
to give much attention to the practice of creating gold standards and training sets
because, without it, we are shooting in the dark when we attempt to improve our
learners or language analysis.

 BUILDS AND TESTING

The implications of working with knowledge bases are clear. KBs are constantly in
flux. Single-event, static processing is dated as soon as we run the procedures. The
only way to manage and use KB information comes from a commitment to constant
processing and updates. Further, with each processing event, we learn more about
the  nature  of  the  underlying  information that  causes  the  processing  scripts  and
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methods to need tweaking and refinement. Without us documenting what we have
done with prior processing, it is impossible to know how to tweak next steps to avoid
dead-ends or mistakes of the past. KBAI processing cannot be cost-effective and re-
sponsive without a memory. We find literate programming, discussed below, an en-
abler in this process. 

Any knowledge management installation may involve multiple input sources, all
moving at different speeds of change. We require numerous steps in processing and
updating the input information, the ‘systems,’ if you will, to achieve our artificial in -
telligence and data interoperability purposes. The artifacts associated with these ac-
tivities range from functional code and code scripts; to parameter, configuration and
build files; to the documentation of those files and scripts; to the logic of the systems;
to the process and steps followed to achieve desired results; and to the documenta-
tion of the tests and alternatives investigated at any stage in the process. The kicker
is that you will need updates to all of these components. Without a systematic ap-
proach, you will not easily remember the script code of what you previously did,
leading to costly re-discovery and re-work.

Build Scripts

We seek simplicity in our code scripts through modularity and aggressive use of
the OWL API. This API gives us the ability to manipulate the graph connections and
structure, using direct triple assertions (often in N3 or Turtle). We seek modularity
to segregate code for testing and debugging, and because of the use of simpler data
input files, again based on triples. We tightly couple the scripting approach with the
platform’s Web services design, how we set parameters, and how we ingest or export
datasets. 

We initially require build scripts for installing the apps on the platform and in-
stalling other build scripts. Since we recommend open source configurations for the
platform, the multiplicity of tools included with the platform can impose installation
challenges. Project build utilities such as Maven or Ant can be very helpful here. For
a new build, you may need to create local directory structures, backup prior ver-
sions, install input knowledge structures, update metadata and any hardwired script
references (which,  should,  over  time, evolve to  more sophisticated control struc-
tures), log setups, and reboots. Your actual build process may take dozens or hun-
dreds of runs as you test changes, errors get generated from various tests (see next
section), and then you resolve them. Throughout the entire process of data ingest
and error resolution, we strongly recommend you enforce UTF-8 encoding across all
knowledge representations. 

In our KBpedia experience, we employ a series of testing scripts during builds
(next section) to debug the knowledge structure in its current implementation. We
build the base knowledge graph (in the case of KBpedia, this is KKO) first. To that, we
add the various typologies used for classifying the structure instances. We perform
separate build checks against the typologies, particularly the identification of orphan
concepts (types) and fragments of types within the typologies. We make modifica-
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tions to the basic input files that guide these scripts, often using a triples format. I
overviewed the kinds of build steps requiring scripting in Chapter 13. These kinds of
iterations are what account for the many runs necessary to produce an integral, con-
nected knowledge structure. Though we could make these modifications via an on-
tology editor such as Protégé, which is still used during inspection to identify the
needed changes, by working with the input file structure, we have a more stream-
lined basis for full, complete build routines. Modifying the input files keeps the build
routines simpler and, therefore, repeatable. 

We advise securing sufficient memory for the build process. In the case of KBpe-
dia, we recommend a commodity server with a minimum of 8 GB of RAM. More is
preferred, though your domain needs may raise or lower memory needs. Once build
issues are worked out, and the graph appears complete and consistent, we advise
adding further scripts to generate statistics,  which we run at this time. You may
want to add standard ontology metrics such as concept and assertion counts at this
time. You may also invoke more detailed stats or fragments, including graph-wide
statistics, at this point. Some of the statistics runs require a census of the knowledge
structure involving multiple, repeated SPARQL queries, which can take quite a bit of
time to run.

Only deploy the updated knowledge structure when the build scripts run to com-
pletion and all tests pass. You may find small projects at the department level re-
quire little in the way of formal deployment; systems in enterprise-wide use may re-
quire staging through multiple servers with various approval steps before official de-
ployment. If you have complicated deployments, perhaps involving multiple servers
to host key platform components, you may need to give these aspects scripting at-
tention.  You  may  need  to  conform  mature  installations  with  broader  enterprise
workflow steps and procedures.

We have progressed KBpedia through this growth and renewal process uncounted
times. Our automated build scripts mean we can re-generate KBpedia on a commod-
ity machine from scratch in about 45 minutes. If we add all of the logic, consistency
and satisfiability checks, we can create a new build in about two hours. One of our re-
cent  expansions  to  KBpedia  involved  reciprocal  mapping  (see  Chapter  15)  to
Wikipedia, and added about 40% new nodes to KBpedia’s then-current structure. Re-
markably, using the prior KBpedia as the starting structure, we were able to achieve
this expansion with even better logical  coherence of the graph in a few hundred
hours of effort due to our build philosophy and scripts.

Testing Scripts

We invoke various test scripts as an integral part of the build procedure. We apply
scripts against platform tools, for coherency and consistency checks, for reference
standards used for placements or machine learning, or for general incremental im-
provements to the KBpedia structure. Each build invokes some structure tests. Stan-
dard tests include 1) ‘unsatisfied’ classes, which lack characterizations sufficient to
standards or degree of connectedness; 2) misassigned classes, where subsumption re-
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lationships are contradicted; 3) wrong relations in terms of degree or probability of
relationship;  4)  wrong SuperTypes;  5)  missing,  new,  or  misassigned attributes;  6)
general ontology checks such as orphans, fragments, or splits; 7) various graph and
connectedness measures; 8) OOPS! consistency and completeness checks; 9) Protégé
and add-on checks; and 10) others of your choosing. We try to provide common de-
tails and organization to error messages and labels, a consistent approach we also try
to extend to Web services and tools. Every error type should have an error code and
adequate explanatory text.

Incremental builds (with version numbers, even if not released) are the secret to
being able to maintain these knowledge structures. Accumulating too many changes
between builds can lead to multiple error sources and greater difficulty to debug. In-
cremental builds surface errors quickly and fewer at a time. Still, we may require
various build runs before we fix all errors. We only release builds that pass all tests,
when we assign a new version number.

We can train using ‘dirty’ training bases that have embedded error no better than
the quality of their inputs. If we want to train our knowledge applications with Dick
and Jane reader inputs, too often in error to begin with, we will not get beyond the
most basic of knowledge levels. We need clean reference standards. On average, we
can create  a  new reference standard  for  a  given  new type in  20-40 labor  hours.
Specifics may vary, but we typically seek, at a minimum, about 500 true positive in-
stances per standard, with 20 or so true negatives. This criterion is a minimum for a
reference standard. For machine learning purposes, more is better. We could con-
ceivably lower the requirement for a reference standard below 500 true positive in-
stances as we see the underlying standards improve. We are not seeking definitive
statistical test values but a framework for evaluating different parameters and meth-
ods. In most cases, we have seen our reference sets grow over time as new wrinkles
and perspectives emerge that require testing.

In all cases, our most critical success factor is  to engage users, the knowledge
workers and managers, in manual review and scoring of the reference standards. We
document and train this process so that we may repeat and refine it. User analysts
understand and detect  patterns  that  then  inform improved methods.  We believe
clean, vetted training sets and reference standards that move toward ‘gold’ ones are
essential to any KM/KR project.

Literate Programming

The only sane way to tackle knowledge bases at these structural levels is to seek
consistent design patterns that are easier to test, maintain and update. Open world
systems must embrace repeatable and mostly automated workflow processes, plus a
commitment  to  timely  updates,  to  deal  with  the  constant,  underlying  change  in
knowledge. Code and scripts do not reside in isolation. We need to explain the opera-
tion of the code to others so they may fix bugs or maintain it. If the software is a pro-
cessing system, we learn much from testing and refinement, which we should docu-
ment for subsequent iterations. We must install and deploy our systems. We need to
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update libraries and languages frequently for security and performance reasons; we
need to update executables and environments as well. When we update systems, we
need to run tests for expected performance and accuracy. The severity of some up-
dates may require revision to whole portions of the underlying systems. New em-
ployees need tech transfer and training, and managers need to know how to take re-
sponsibility for the systems. These are all needs that literate programming can help
support.

Literate programming is a style of writing code and documentation first proposed
by Donald Knuth. In any aspect of a project that uses code or scripts — tests, configu-
rations, installations, deployments, maintenance, or experiments — the developers
or users write narratives and documentation to accompany it. The documentation
should be robust by explaining what it is, the logic of it, and what it is doing and how
to exercise it. This documentation far exceeds the best-practices of inline code com-
menting. Literate programming narratives might provide background and thinking
about what is being tested or tried, design objectives, workflow steps, recipes, list-
ings of data or discussions of datasets, or whatever. The style and scope of documen-
tation are similar to a scientist’s or inventor’s lab notebook. Indeed, the breed of
emerging electronic notebooks, combined with REPL coding approaches, which allow
the embedding of live code demos within notebooks, now enable interactive execu-
tion of functions and visualization and manipulation of results, including supporting
macros. Thus, we can include working demos and code in-line with our narratives.

Notebook  systems  that  support  literate  programming,  such  as  Org-mode,  can
‘tangle’ their documents to extract the code portions for compilation and execution.
They can also ‘weave’ their documents to extract all of the documentation in the
code now formatted for human readability, including using HTML. Some electronic
systems can process multiple programming languages and translate functions. Some
electronic systems have built-in spreadsheets and graphing libraries, and most open-
source systems can be extended (though with varying degrees of difficulty and in dif -
ferent languages). Some of the systems interact with or publish Web pages.

Leading notebook software includes the  iPython Notebook (Jupyter), Org-mode,
Wolfram Alpha,  Zeppelin,  Gorilla, and others. Literate programming requires a fo-
cused commitment. The objective of programmers should not be solely to write code
but to write systems that can be used and re-used to meet desired purposes at an ac-
ceptable cost. Documentation is  integral  to that objective.  Experiments should be
documented, codified, and improved. A lines-of-code (LOC) mentality is counter-pro-
ductive to effective software for knowledge purposes. Literate programming is the
most conducive workflow to achieve these ends, with notebooks as the medium for
tracking and training work tasks.

One question is what language to use for the literate programming or scripts. Lisp
(defined as a list processing language) is one of the older computer languages around,
dating back to 1958, and has evolved to become a family of languages. ‘Lisp’ has many
variants, with Common Lisp one of the most prevalent, and many dialects that have
extended and evolved from it. Most recently our scripting choice has been Clojure, a
modern language based on Lisp, but able to run in the Java virtual machine (JVM),
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which  makes  integrating  with  existing  Java  tools  much  easier.  In  the  context  of
knowledge management and semantic uses,  fully 60% of existing applications can
now  interoperate  with  Clojure  apps,  an  instant  boon  for  leveraging  many  open
source capabilities.  Java gives  us  certain  advantages,  including platform indepen-
dence and the leverage of debugging and profiling tools, among others. Clojure is a
functional programming language, which means it has roots in the lambda   calculus  
and functions  are  ‘first-class  citizens  .  ’  Functions  can pass  as  arguments  to  other
functions, and return as values, or assign as variables in data structures. These as-
pects make the language well suited to mathematical manipulations and the building
up  of  more  complicated  functions  from  simpler  ones.  Because  of  Clojure’s  REPL
(read-event-print-loop) abilities, we can interpret code immediately as we execute
instructions at the time of input, leading to a very dynamic and responsive code-de-
velopment and -testing environment, also well suited to literate programming.

Alternatives like  Scheme,  Erlang,  Haskell, or Scala offer some of the same JVM
benefits. Further, tooling for Clojure is still limited, and it requires Java to run and
develop. Even with extensions and DSLs, learning Lisp’s mindset may be awkward for
some. The point here is not to point to a specific language alternative but to enumer-
ate the kinds of evaluation criteria that may go into such a software decision. Exter -
nal factors, too, such as popularity and skills knowledge, certainly can and should en-
ter into language decisions.

As a summary observation, a knowledge management project brings substantial
technical debt,  defined as the overhead and overlooked consequences of adopting a
given technological solution, and then needing to develop, stage, manage, and use it.
Technical debt is broader still for knowledge management projects because all as-
pects of the source knowledge are dynamic. Keeping current with changes is a posi -
tive thing, and no responsive KM solution would last long without it. Literate pro-
gramming captures all of these dynamics.

SOME BEST PRACTICES

We have discussed at length build components and practices over the past five or
six chapters. While we have not been prescriptive, since techniques and tools are
continually improving, we have tried to cover the major steps and background that
goes into building a knowledge representation and management platform. We have
also  discussed  the  approaches  for  building  the  knowledge  structures  and  graphs
upon which these systems run. As we wrap up these discussions, let me recount some
of the best practices we apply in these steps. We have learned most of these best
practices from client deployments in areas such as data treatment and dataset man-
agement, creating and using knowledge structures, and in testing, analysis and docu-
mentation. 

No  bright  line  separates  recommended  steps  and  best  practices,  so  we  have
touched  upon  many  key  arguments  already  in  our  presentation.  Modularity  in
knowledge graphs, or consistent attention to UTF-8 encoding in data structures, or
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the emphasis on ‘semi-automatic’  approaches, or the use of literate programming
and notebooks to record tests and procedures, are just a few of the examples where
lines blur between standard and best practices. The key point is that best practices
are also an integral part of doing standard tasks right.

Data and Dataset Practices

We have emphasized the importance of using only one or a few internal canonical
forms for representing our data, including the importance of testing and ensuring we
maintain  UTF-8  encoding  throughout.  UTF-8  is  important  to  maintain  multi-lan-
guage capabilities and the uniform treatment of different language character sets
and accents. We have noted the use of basic triple assertions (often in N3 or Turtle)
for use in our data transfer protocols. We have also noted the importance of using
language tags for all of our labels as one means to promote multi-lingual use and
internationalization (sometimes referred to as  i18n).  We want to  add on to these
points in this section by pointing out best practices in dataset packaging and the use
of linked data.

Dataset Best Practices

Datasets are one of the fundamental dimensions for organizing content within
our recommended design. Some consideration needs to go into how best to bound
these structures. The first consideration relates to the domain, or the scope of the
dataset: What is the applicable scope or business purpose of this information? It is
best to think of this question from a perspective of access, which is, after all, the
most pragmatic way to think of it. We also want to capture the source of the data,
and whether it may vary by publisher or source location. For example, provenance or
download location or format may be an important distinguishing factor in release or
access and may have copyright or royalty implications. That leads to the need to
record when we create the data, perhaps adding metadata for whether the data has
periodic update or creation times. It may be helpful to distinguish between prelimi-
nary data and final data or to segregate data because of workflow or processing con-
siderations. We also need to record all data by type; that is, does the data vary by
class or kind? For example, we may find it desirable to keep records about schools
separate from records about churches, though at a different level both may be con-
sidered buildings. We should be attentive to the data attributes for specific instances,
and to use common vocabulary and schema for organizing those characteristics. We
may also want to record the completeness of records in regards to attributes or de-
scriptions, since we may want to prefer using better-characterized data in parts of
our analysis or may want to flag areas needing future attention. Any of these differ-
ences may warrant creating a separate dataset or adding new metadata. Ultimately,
these structural considerations of how to organize for the data comes down to possi -
ble differences in access rights, both at the record and attribute level. Access differ-
ences may warrant altered dataset organization. No limits occur to the number of
datasets that may be managed by a given KM instance.
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Once you set such boundaries, then think about common attributes or metadata
that should be applied.  The KBART Recommended Practice is worth review since it
suggests  a  file  format  and common sense set  of  metadata  fields  and formats  for
transmission of metadata from content providers useful to linked knowledge bases. 10

Still, further, datasets and their records (as all decision or information artifacts in an
enterprise) go through natural work stages or progressions. Even the lowliest writ-
ten document goes through the steps of being drafted, reviewed, characterized, ap-
proved, and then possibly revised. Whatever such workflow steps may be, including
versioning, may argue to assign some records to a different dataset. Lastly, whatever
operational mode you devise, find naming conventions to reflect these variations in
your dataset files. These considerations show that datasets are meaningful informa-
tion artifacts in and of themselves.

Linked Data

Linked    d  ata   is a set of best practices for publishing and deploying instance and
class data using the RDF data model, naming the data objects using uniform resource
identifiers (URIs or IRIs), and exposing the data for access via the HTTP protocol,
while emphasizing data interconnections,  interrelationships and context useful to
both humans and machine agents. The challenge is not the mechanics of linking data,
but the meaning and basis for connecting that data. Connections require logic and
rationality  sufficient  to  inform  inference  and  rule-based  engines  reliably.  It  also
needs to pass the sniff test as we ‘follow our nose’ by clicking the links exposed by
the data.

Most linked data uses a woefully small vocabulary of data relationships, with even
a smaller set used for setting linkages  across existing linked data sets. Linked data
techniques are a part of the foundation of overall best practices, but not the whole
foundation. We do not, for example, have sufficient and authoritative linking predi-
cates to deal with common ‘sort of’ conditions. Just as SKOS is a generalized vocabu-
lary for modeling taxonomies and simple knowledge structures, we need a similar
vocabulary for predicates that reflect real-world usage for linking data objects and
datasets with one another.11 KBpedia provides this. Practice to date suggests that un-
curated, linked datasets in the wild are unlikely useful nor used in combination with
other datasets. On the other hand, users desire and readily consume quality linked
data. Where you want your KM installation to interact with outside parties, employ-
ing linked data is one way to help ensure interoperability.

Knowledge Structures and Management Practices

A central role of ontologies is to describe a ‘worldview,’ and in specific organiza-
tions, this means a shared understanding of the concepts, relations, and terminology
to describe the participants’ shared domain. In turn, these shared understandings es-
tablish the semantics for how to effect communication and understanding within the
population of domain users. All of this means that finding ways to identify and agree
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upon shared vocabularies and understandings is central to the task of modeling (cre-
ating an ontology) for the domain, and it involves practices in collaboration, naming
and use of these knowledge structures. Sometimes this perception of shared views is
too strictly interpreted as needing to have one and only one understanding of con-
cepts and language. Far from it. 

Organizational and Collaborative Best Practices

One of the strengths of ontologies and language modeling within them is we can
accommodate multiple terms for the same concept or slight differences in under-
standings about nearly similar concepts. It is perfectly OK to have differences in ter-
minology and concept understandings so long as those differences are also captured
and explicated within the ontology. Embedding collaboration as an implementation
best practice is important. We should understand that prior investments in agreed-
upon structures and vocabularies deserve respect and we should review them for in-
corporation. We should capture essential differences, not smudge or obscure them.
We want to organize our work teams, and support processes for consensus making,
including tools support, so that our teams identify and decide upon terminology, def-
initions, alternative labels (semsets), and relations between concepts. These processes
need not be at the formal ontology level, but at the level of the concept graph that
underlies the ontology.

Naming and Vocabulary Best Practices

 We recommend in our standard build practice to define all concepts and termi-
nology, use semsets to capture alternative ways to name things, and to sometimes
treat concepts as either classes or instances. While consensus building and collabora-
tion methods are at the heart of effective ontology building, we should not impose
language and concepts by fiat. Try to name all concepts as single nouns. Use CamelCase
notation for these classes (that is, class names should start with a capital letter and
not contain any spaces, such as MyNewConcept). Name all properties as verb senses (so
that we may easier read triples); e.g., hasProperty. Try to use mixedCase notation for
naming these predicates (that is, begin with lower case but still capitalize each word
after and do not use spaces). Try to use common and descriptive prefixes and suffixes
for related properties or classes (while they are just labels and their names have no
inherent semantic meaning, it is still a useful way for humans to cluster and under-
stand your vocabularies). For examples, properties about languages or tools might
contain suffixes such as ‘Language‘ or ‘Tool‘ for all related properties. Provide  in-
verse properties where it makes sense, and adjust the verb senses in the predicates to
accommodate. For example, <Father> <hasChild> <Janie> would be expressed in-
versely as <Janie> <isChildOf> <Father>.

Give all concepts and properties a definition. We conduct the matching and align-
ment of things by concepts (not merely labels), which means each concept must be
defined.12 Provide clear definitions (along with the coherency of its structure) to give
your ontology its semantics. Remember not to confuse the label for a concept with its
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meaning. (This approach also aids multi-linguality). Provide a preferred label annota-
tion property that is used for human readable purposes and in user interfaces. KBpe-
dia uses the property of skos:prefLabel. Include a class semset, robustly harvested
and populated, for all concepts and ambiguous entities. Try to assign logical and short
names to namespaces used for your vocabularies, such as  kbpedia:XXX or  skos:XXX,
with a maximum of five letters preferred. Enable multi-lingual capabilities in all defini-
tions and labels. This language requirement is a somewhat complicated best practice
in its own right. For the time being, it means attending to the xml:lang=”en” (for
English, in this case) property for all annotation properties.1 

Best Ontology Practices 

To my knowledge,  the most empirical  listing of ontology best  practices comes
from Simperl and Tempich.14 In that 2006 paper they examined 34 ontology building
efforts and commented on cost, effectiveness and methodology aspects. Various col-
lective ontology efforts also provide listings of principles or best practices. The OBO
(The  Open  Biological  and  Biomedical  Ontologies)  effort,  for  example,  offers  a  useful,
organized listing of criteria15 for an exemplary ontology. Their recommendations in-
clude their own best practices and to formulate and use a unified methodology. Sim-
perl and Tempich emphasize modularity in their findings, consistent with our stan-
dard recommendation. They also recommend metrics for ontology evaluation and
tools  to  extract  ontology  components  from existing data  sources,  also  consistent
with our recommended standards.

One best practice we recommend is to embrace a mindset that ontologies can, and
should, start small, and may grow incrementally. Another best practice is to keep re-
lationships (predicates) simple at first until you gain fluency. Use simple, well-de-
fined and documented attributes. Aggressively mine and re-use existing knowledge
and structure. Knowledge graphs, like knowledge, must be a continuous, dynamic
structure, designed for (comparatively easy) updates and automatic builds. Another
best practice is to enter items once, and relate them only to direct parents, not more
removed upper categories. The upper categories can be inferred, and single, proper
placements lead to a cleaner graph structure that is easier to interpret. Be cognizant
of the many internal platform needs in workflow management and user interfaces
and widgets where administrative ontologies may also contribute. If this mindset if
followed, your initial ontology development need not be comprehensive nor expen-
sive.  You may grow efforts  as  you realize  benefits.  You can adopt pragmatic  ap-
proaches to testing and then building out a knowledge management system. Starting
with a stable structure like KBpedia is likely your most efficient path.

Testing, Analysis and Documentation Practices

The usefulness of a KM platform depends on its accuracy, consistency, and con-

1 The Protégé manual13 is also a source of good tips, especially with regard to naming conventions and the 
use of the editor.
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currency for the domain. We need to ensure these factors remain true as we extend
our use of the knowledge and grow the domain further. We need to identify, charac-
terize, and vet concepts. We need to teach this process, and to master tools. We need
to assign responsibilities and manage the practice. We find testing and documenta-
tion central to this process.

Testing Best Practices

You should embed testing for functionality and testing your knowledge struc-
tures for consistency and coherency in all phases and steps of your KM platform.
Testing is  best when it  is  incremental and best  as part of any build process. You
should assign domains and ranges to  properties,  and invoke reasoners  and other
tools during update efforts to find inconsistencies. You should test all new concepts
and properties at the time of introduction, which you may batch so long as you can
manage the increments.  Test  external  class  assignments because they work to ‘ex-
plode the domain’16 and surface other inconsistencies. Use already vetted knowledge
bases as reference testbeds when testing the coherence of concepts in a new domain
ontology; if the domain ontology describes concepts quite differently than standard
practice, or if relationships between concepts are at variance, then you likely have
coherency problems. As you work with the system, continue to evolve ontology spec-
ifications to include necessary and sufficient conditions for complete reasoner testing. 

Analytical Best Practices

The two core opportunities of a KM system in data interoperability and knowl-
edge-based artificial intelligence place a premium on analysis, principally in natural
language understanding and machine learning. External search engines also fit into
this category. In all cases, these analytic tools or learners are third-party applica-
tions, with varying degrees of ease-of-use and documentation. Three areas of best
practices apply to these external tools. First, it is important to discover, test and se-
lect the tools. Second, employ documentation and support structures, such as input
data files or run-control specifications, to help make analytic runs repeatable. Third,
be cognizant of the technical debt that each adopted tool may bring.

Every  new  analytical  task  should  begin  with  a  survey  of  available  tools.  You
should include standard search,  plus  a search of major code repositories  such as
GitHub,  plus  monitoring  of  technical  publications  sources  (blogs,  RSS  feeds,
arXiv.org,  etc.),  in your initial investigations.  As you research the tools, you may
need to migrate from simple spreadsheet listings to detailed characterization of the
alternatives. You should download leading candidates, install them, and initially test.
This research is a good place to use the notebook paradigm. The choice of tools is
fundamental to a KM system built from multiple parts from multiple parties with
multiple purposes. Performance and scalability may rapidly become concerns as a
KM system grows within larger enterprises.

As tools progress from candidates to provisional, we need to integrate them into
the existing platform. Though you likely used support for the internal canonical data
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forms as an initial screening criterion, you now need to stage and test data exchange
for the tool. As in other areas, you should document steps thoroughly for broader
training and adoption. In the evaluation process, every new analytic area, even more
so than the specific tools involved, will  also incur some degree of technical debt.
Scully et al. provide one example for a machine learning installation of how to think
about various categories of technical debt potentially arising from new tools. 17 An-
drew Ng also provides a concise listing of practical machine learning tips.18

In varied guises, other analytical tools impose similar or related overhead costs.
Search, as we discussed in  Chapter 12,  also poses debt and changes to work proce-
dures. We always have hard-to-quantify benefits and the costs at the more intangible
ends of the spectrum when using tools. Our benefits might be qualitative; our costs
may hide. If we are to include intangible benefits in the positive column, then we
must also be expansive in how we think of the costs of adoption as well.

Documentation Best Practices

Let me emphasize strongly we need to bake documentation into the cake.  We
need to document every step of our efforts, like is done for good science notebooks
but leveraging today’s  modern electronic versions.  We must adequately comment
and annotate our ontologies. We should document the entire ontology vocabulary via a
dedicated system that allows finding, selecting and editing of ontology terms and
their  properties.  We  should  document  ontology  maintenance  and  construction
methodologies,  including  naming,  selection,  completeness  and  other  criteria.  We
find wiki documentation useful for training purposes , which is easily updated and
maintained.  Try  to  accommodate  both  standard  wikitext  and  WYSIWYG  editors;
users have split preferences. Supporting the output of notebook files to wikis or Web
pages is a best practice. Also, find large-scale graph and visualization tools so that
you can prepare and distribute navigable versions of your knowledge graphs. You
may also find other  diagrams and flowcharts, including  UML diagrams, useful for
documenting and training workflows or defining use cases for tools. 

While  it  is  not  yet  seamlessly  achievable,  try  to  move  toward  s  ingle-source  
publishing, where one can author once and then publish selected portions in a vari-
ety of formats (HTML, PDF, doc, csv). We want wiki-like environments where multi-
ple authors may contribute, and we have easy collaboration and rollback of versions.
Simple import  and export versions,  such as  XHTML or XML,  helps facilitate  this,
though it is still difficult to theme or layout content easily for multiple publication
venues. We also want to adopt single-source publishing environments that enable us
to characterize and label workflow steps as part of our natural interaction with the
content. These systems should allow user-defined steps and labels and rules.

Best practices, like worldviews, depend on the circumstance and the players. We
may need to modify broad guidelines that work in general  for the specific.  In all
cases, KR and KM systems tailored to particular needs, and scoped to specific do-
mains, will have their own set of capabilities and configurations. Today’s require-
ments will evolve to different ones tomorrow. The work environment in which you
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need to embed these systems and their workflows will vary greatly. That is why it is
practical to consider standard and best practices as guidelines, and not prescriptions.
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