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PLATFORMS AND KNOWLEDGE MANAGEMENT

aving discussed terminology and components in previous chapters, now let
us turn our attention in this Part IV to building an actual knowledge represen-

tation  system. The major theme of the effort is to obtain maximum value from the
work of converting and integrating data not only to achieve the aims of data interop-
erability and  knowledge-based  artificial  intelligence (KBAI)  but  to  leverage  maximum
benefits  from  knowledge  management as  well.  We follow this  chapter  on platforms
with two additional chapters in  Part IV on how to build out and tailor a system for
your own domain needs and on testing and best practices.

H

The material in these three chapters draws on our experience in building seman-
tic  technology  platforms  for  a  variety  of  clients  and  applications  over  the  prior
decade.1 In various guises and tailorings, we have created standalone and  Drupal-
based platforms using  PHP, and have created standalone systems using the  Clojure
language. Though we have released portions of these efforts as open source — Clo-
jure components related to KBpedia, and PHP and Drupal frameworks for the Open
Semantic Framework (OSF) — we are not prescriptive in this chapter or elsewhere in
the book about how to build a KR/KM platform. Rather, we emphasize guidelines and
lessons learned versus any specific design or language. Platforms will continue to
emerge and evolve, and what we should seek from those platforms regarding design
and architecture is of more guiding importance than any specific instantiation.

We begin this chapter by critically reviewing the work objectives of a platform.
These functional understandings are related to the earlier  TBox and  ABox splits we
discussed for description logics in Chapter 8. We also discuss the importance of content
and general workflows. From this basis, we then proceed to look at platform consid-
erations. As noted in Chapter 4, the platform should support three main opportunities
in general knowledge management, data interoperability and knowledge-based artificial in-
telligence (KBAI). We also discuss access control and governance, and other enterprise
considerations. The last section of this chapter deals with the overall Web-oriented ar-
chitecture, emphasizing the importance of Web connectivity and the use of modular
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Web services for scalability and flexibility. The entirety of these considerations helps
us set the overall guidelines for the design and architecture for a responsive knowl-
edge representation and management platform. 

USES AND WORK SPLITS

To contemplate what a knowledge representation platform should look like, we
first need to define what kinds of work we anticipate the platform to do. These work
requirements are related to the purposes we have for the platform, as well as the ex-
isting state of tooling and applications available to support them. (Chapters 15 and 16
offer additional use cases.) Workflows are also intimately tied to these questions.

The State of Tooling

I have been tracking and documenting the state of semantic technology, graphics
visualization, and knowledge management tooling for nearly two decades. For many
years I  maintained  Sweet Tools,  a searchable and faceted compendium of semantic
technologies that grew to a listing exceeding 1000 tools, the most comprehensive
available.2 In our platform work, we have used and integrated some of the leading
tools available from this listing. We have also extended and created many of our tools
and ontologies that we have contributed back to the community as open source.3 

We now have much tooling and demo experience to draw upon since the seminal
article on the semantic Web appeared in the Scientific American in 2001.4 The primary
sources for supporting the semantic Web are the European Union, mostly for aca-
demics, and the US government, mainly for intelligence and biomedical purposes to
academics and businesses alike. 

In the early years, ontology standards and languages were still in flux, and the
tools basis was similarly immature.  Frame logic, description logics, common logic
and many others were competing at that time for primacy and visibility. Practition-
ers based most ontology tools at that time such as Protégé,5 OntoEdit,6 or OilEd7 on F-
logic or the predecessor to OWL, DAML+Oil. The emergence of OWL and then OWL 2
by the  W3C helped solidify matters. The University of Manchester introduced the
OWL API,8 which now supports OWL 2.9 Protégé, in version 5x, is now solely based on
OWL 2 and has become a popular open source system, with many visualization and
OWL-related plug-ins. A leading commercial editor is TopBraid Composer, which uses
the Eclipse IDE platform and Jena API.10 The OWL API is now a standard used by Pro-
tégé and leading reasoners (Pellet, HermiT, FaCT++, RacerPro). It supports a solid on-
tology management and annotation framework, and validators for various OWL 2
profiles (RL, EL, and QL). 

RDF data management systems, or ‘triple stores,’  such as OpenLink’s  Virtuoso,
Ontotext’s  GraphDB, and Franz’s  AllegroGraph, are now mature offerings. One may
also apply modifications of existing data stores by Oracle, MarkLogic, and a variety of
NoSQL databases to the design ideas presented herein. Developers presently have
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multiple open source and commercial options to choose from, including cloud op-
tions such as Amazon’s Neptune, for hosting RDF and OWL databases. The more com-
prehensive frameworks have opted to become ontology-engineering environments
and to provide all capabilities in one box via plug-ins. 

 Java is the language of choice for about half of the semantic technologies, though
existing toolsets use more than a score of different languages. Academic tools are of-
ten the most innovative,  but the degree of  completeness  is  often frustrating and
most academic and grant-supported tools have limited or no support. Many, after a
single experimental release, are abandoned or see no further development. Newer
academic releases (often) are more strategically oriented and parts of broader pro-
grammatic  emphases.  Programs like  AKSW from the University  of  Leipzig  or the
Freie  Universität  Berlin  or  Finland’s  Semantic  Computing Research Group (SeCo),
among many others, are exemplars of this trend. Promising projects and tools are
now much more likely to be spun off as potential ventures, with accompanying bet-
ter packaging, documentation and business models.

Full-text search is weak in RDF triple stores, and many leading approaches now
match a text engine with the semantic portions. Some excellent components exist,
but not yet packaged into single-stop solutions as RedHat did with Linux. The ontol-
ogy tooling is especially difficult for standard knowledge workers to use, and the
coupling of tools into current, actual workflows is lacking. Our experience is that
most potential components are incompletely tested, and lack many basic expecta-
tions suitable for enterprise environments. Much scripting is necessary to glue to-
gether existing parts. However, some of the design guidance provided herein, espe-
cially about the use of canonical data forms, Web services, and suitable modular ar-
chitectures, can help overcome many of these problems. It  is  possible to create a
proper  enterprise  knowledge  management  environment  at  acceptable  cost  using
available  open  source  components  and  solid  architectural  design.  The  Apache
Software Foundation is doing an especially good job of picking, incubating and sup-
porting a diversity of open source tools useful to semantic technologies. These tools
include  Ant,  Hadoop,  HTTP  server,  Jackrabbit,  Jena,  Mahout,  Marmotta,  Maven,
OpenNLP, Singa, Stanbol, SystemML, Tika, Tomcat, UIMA, ZooKeeper, and the Lucene
and Solr search engines and Nutch crawler. Additional tooling that would make this
task easier still includes:

 Vocabulary managers — we lack easy inspection and editing environments for
concepts  and predicates.  Though standard editors  allow direct  ontology lan-
guage edits (OWL or RDFS), these are not presently navigable or editable by non-
ontologists. Intuitive browsing structures with more ‘infobox’-like editing envi-
ronments could be helpful here; 

 Graph API — it would be wonderful to have a graph API (including analysis op-
tions) that could communicate with the OWL API. As a second option, it would
be helpful to have a graph API that communicates well with RDF and ontologies;

 Large-graph visualizer — while I have earlier reviewed large-scale graph visual-
ization software,11 with  Gephi and  Cytoscape being my two preferred alterna-
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tives, they are neither easy to set up nor use. I would like more easily to select
layout options with quick zooms and scaling options;

 Graphical editor — some browsers or editors provide nice graph-based displays
of ontologies and their properties and annotations. However, the better design
we advocate here is to edit the ontology graph directly in its deployment envi-
ronment; and

 Component  services  —  we  recommend piecing  out  ontology  and  knowledge
management functions into individual  components  that we can integrate di-
rectly into existing workflows with minimal training.

TBox, ABox, and Work Splits

To better understand what kinds of functions we require and how they may relate
to existing tools or applications, recall the discussion of description logics in Chapter 8.
Description logics and their semantics traditionally split concepts and their relation-
ships from the different treatment of  individuals and their attributes and roles, ex-
pressed as fact assertions. The concept split is known as the TBox (for terminological
knowledge, the basis for  T in  TBox) and represents the schema or taxonomy of the
domain at hand, what we also call the knowledge graph. The TBox is the structural and
extensional component of conceptual relationships. The second split of individuals is
known as the ABox (for assertions, the basis for A in ABox) and describes the attributes
of individuals, the roles between individuals, and other assertions about individuals
regarding their class membership with the TBox concepts. The ABox is the reposi-
tory for data records and can be a light layer over existing data stores. Both the TBox
and ABox are consistent with set-theoretic principles.

TBox and ABox logic operations differ, and their purposes vary. TBox operations
are based more on inferencing and tracing or verifying class memberships in the hi-
erarchy (that is,  the structural placement or relation of objects in the structure).
ABox operations are more rule-based and govern fact checking, instance checking,
consistency checking, and the like. ABox reasoning is often more complicated and at
a larger scale than that for the TBox. However, even with these TBox and ABox splits,
we can also see that some work done by a knowledge management system falls out-
side of the specific purview of instances and concepts:

TBox Possibly Separate Work Tasks ABox

 Definitions of the concepts 
and properties (relation-
ships) of the controlled vo-
cabulary 

 Declarations of concept ax-
ioms or roles 

 Inferencing of relationships, 
be they transitive, symmet-

 Mappings are the core of in-
teroperability in that con-
cepts, and attributes get 
matched across schema and
datasets 

 Transformations are the 
means to bring disparate 
data into common grounds,

 Membership assertions, ei-
ther as concepts or as 
roles 

 Attributes assertions 
 Linkages assertions that 

capture the above but 
also assert the external 
sources for these assign-
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TBox Possibly Separate Work Tasks ABox

ric, functional or inverse to 
another property 

 Equivalence testing as to 
whether two classes or 
properties are equivalent 
to one another 

 Subsumption, which is 
checking whether one con-
cept is more general than 
another 

 Satisfiability, which is the 
problem of checking 
whether a concept has been
defined (is not an empty 
concept) 

 Classification, which places a
new concept in the proper 
place in a taxonomic hier-
archy of concepts 

 Logical implication, which is 
whether a generic relation-
ship is a logical conse-
quence of the declarations 
in the TBox 

 Infer property assertions im-
plicit through the transi-
tive property 

the second leg of interoper-
ability 

 Entailments, which are 
whether the stated condi-
tion implies other proposi-
tions 

 Instance checking, which 
verifies whether a given in-
dividual is an instance of 
(belongs to) a specified 
concept 

 Knowledge base consistency, 
which is to verify whether 
all concepts admit at least 
one individual 

 Realization, which is to find 
the most specific concept 
for an individual object 

 Retrieval, which is to find 
the individuals that are in-
stances of a given concept 

 Identity relations, which is to
determine the equivalence 
or relatedness of instances 
in different datasets 

 Disambiguation, which is re-
solving references to the 
proper instance

 Machine learning based on 
entities and features in the 
knowledge base 

ments 
 Consistency checking of in-

stances 
 Satisfiability checks, which

are meeting the condi-
tions of instance mem-
bership 

Table 12-1: Possible Work Activities in a Knowledge Management Platform

Searching across the entire database or conducting machine learning, as examples,
are such functions that work against the whole knowledge structure, or which pose
work requirements orthogonal to the TBox-ABox splits.  Table 12-1 summarizes how
we may segregate these significant work areas against the TBox, the ABox, or possi-
bly separate to them.

The TBox should be a coherent structural description of the domain, which ex-
presses  itself  as  a  knowledge  graph  with  meaningful  and  consistent  connections
across its concepts. Somewhat irrespective of the number of instances (the ABox) in
the knowledge base, the TBox is relatively constant in size given the desired level of
descriptive scope for the domain. (In other words, the logical model of the domain is
mostly independent of the number of instances in the domain.) As its name suggests,
the TBox is where we define terminology for the vocabulary of the domain, the pred-
icates used, and the relationships of those concepts to one another via the predicates
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available. A key aspect of the TBox functionality is classification through subsump-
tion hierarchies, from which we set much of the logic and inferencing capabilities of
the structure. The TBox also requires checks during its building and maintenance to
ensure that we have provided complete definitions (satisfiability) and consistency and
logic tests to make sure our placements within the knowledge graph remain consis-
tent and coherent.

The ABox of instances consists of the specific individual things in the KB that are
relevant to the domain. Instances can be many or few, as in the millions within KBpe-
dia, accounting for 90% or more of the total number of objects in the knowledge base.
We characterize instances by various types of structured data, provided as attribute-
value pairs, and which we describe with long or short texts and with multiple aliases
and synonyms, and we relate to other instances via type or kind or other relations,
possibly in multiple languages. 

We can perhaps better illustrate this work split with Figure 12-1 showing the inter-
actions of all of these contributing parts:
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Whether a single database or the federation across many, we have data records (in-
stances in the ABox) and a logical schema (ontology of concepts and relationships in
the TBox) by which we try to relate this information. As  Table 12-1 and  Figure 12-1
show, the TBox is where the reasoning work occurs; the ABox is where assertions and
data integrity occurs. This meaningful work broadly relates to the growth and main-
tenance of the knowledge base itself. For instance, all aspects of ontology editing re-
late  to  these  components,  as  do  logic,  consistency,  coherency  and  satisfiability
checks. These portions are essential to the integrity of the knowledge structure via
its editing and maintenance but represent very little of the desired work we want to
extract from the knowledge structure. These work tasks are separate from the needs
of the TBox and ABox themselves.

The middle column of Table 12-1 and Figure 12-1 list some of those work tasks that
reside outside of the knowledge graph and knowledge base build and maintenance
tasks. Some of these tasks may apply across the entire knowledge structure, such as
search or retrieval. Other tasks are specialized ones that may involve subsets of the
structure or dedicated extractions of one form or another. 

What the Figure 12-1 readily shows is that platforms with only semantic technolo-
gies lack the major work functions desired. It is this gap to bring in and facilitate
dataset exchanges to external applications that most requires tailored scripting for
specific installations (along with the need to create the domain knowledge graph and
ingest data, of course). It is why standalone semantic technology platforms have not
been, generally, commercially successful. Not shown in the figure is the further gen-
eral weakness of semantic technology platforms; namely, they are hard to learn and
use. We need more visual frameworks with well-segregated tasks, such as what we
are beginning to see in such tools as the SKOS-based PoolParty.

Providers have increasingly embraced platforms that integrate conventional text
search engines, such as Solr, for generalized retrieval, plus use in instance and con-
sistency  checks.  However,  critical  areas  such  as  mappings,  transformations,  and
identity  evaluation remain weak.  Mappings refer  to  the suite  of  aids  that suggest
matching correspondences between objects in the domain knowledge base with ex-
ternal sources, with choices often manually vetted.  Transformation is the ability to
convert subsets of the knowledge graph to the dataset format required by various ex-
ternal applications. These include machine learning, AI, or specialized natural lan-
guage processing (NLP) like parsing into parts of speech or transforming external
sources into new records or updating the knowledge base.  Identity evaluation means
to contextualize a possible entity reference to its disambiguated actual subject. Main-
taining identity relations and disambiguation as separate components also has the
advantage of enabling us to swap out different methodologies or algorithms as better
methods become available. We could apply a low-fidelity service, for example, for
quick or free uses, while we reserve more rigorous methods for paid or batch mode
analysis. We may deploy any of these mapping, transformation, or identification ac-
tivities as a Web service, preferably using an internal canonical data transfer form,
discussed further toward the end of this chapter.

Breaking our description logics design into the TBox and ABox, and then enumer-
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ating  the  work  tasks  we  wish  to  do  against  these  structures,  helps  us  to  think
through the modularity and architecture we want to see in our actual deployments.
The practical aspects of our work tasks and where and how they should occur be-
come clearer. We know that we can architect a framework that is amenable to swap-
ping in and out different analysis methods, and that can be modular to use or not dif-
ferent work tasks and applications. Here are some general principles that should ap-
ply to most domain installations:

 We want to handle our concepts, and their definitions and relationships (TBox)
separate from our instance data, and subject to rigorous testing, vetting, and
updating since this is the controlling logical structure of our knowledge man-
agement system;

 The task of knowledge graph creation and maintenance should be the responsi-
bility of knowledge workers and their management, not the IT department;

 We want to handle our instance data (ABox) separately and directly, using com-
paratively constant and readily understandable attribute-value pairs;

 We can re-use these instance records in varied and multiple worldviews in rela-
tion to different TBoxes or external applications; we can support these different
perspectives without affecting instance data in the slightest;

 We should approach architectural decisions from the standpoint of the work to
be done, leaving open unique analysis or tasks like disambiguation or full-text
search as functions, which may be added or not at another time; 

 Ontologies  should be modular,  scoped according to appropriate  user  groups,
and kept as simple and easy to understand as possible; this is a significant ratio-
nale for the typology design discussed in Chapter 10. We should assert inter-ontol-
ogy relationships via a rather simple upper ontology, such as what is provided
by the KBpedia Knowledge Ontology;

 We may base mapping on suggestions from TBox (extensional) relationships or
ABox (intensional) relationships, and is a particularly weak yet important part
of tooling;

 We can treat logic and consistency testing as external applications, and conduct
them on scheduled or on-demand via services using canonical formats;

 We should evaluate instances separately from concepts, which also via triangu-
lation may aid such tasks as disambiguation or entity identification; 

 We should include access control and governance (missing from Figure 12-1) in
most enterprise settings or where we use proprietary or private data; 

 We can often keep instance records in situ, especially useful when incorporating
the massive amounts of data in existing relational databases;

 We may add to instance stores incrementally, via  in situ or staged, following
these same design principles; and, given the discussion in Chapter 9; and
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 We should premise the entire system on continuous change given the nature of
knowledge and its openness.

Content Workflows

Two of these critical work splits are thus to: 1) keep knowledge updated; and 2)
directly involve knowledge workers and subject matter experts. These requirements
go hand and hand since the source of new knowledge comes from these workers and
their accumulated content in the first place. More simply put, to capture knowledge,
the systems to do so must be in the hands of the knowledge workers themselves, and
must integrate cleanly into their existing content workflows. It is inefficient not to
leverage existing workflows. Users will likely ignore new knowledge graph mainte-
nance and use tasks unless they are dead simple to implement. We best achieve adop-
tion through an incremental series of non-threatening tasks.

The following Figure 12-1 sketches out broad steps and interactions that one might
want to see in a content workflow:

Respect for workflows is the first principle when setting boundaries around func-
tional requirements. We express this respect in two different ways. The first is that
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we cannot unduly disrupt existing workflows when introducing interoperability im-
provements. While workflows can be improved or streamlined, new tools and prac-
tices must fit with existing ways of doing tasks to see adoption. Users mostly resist
jarring changes to existing work practices.

The second way is that we should explicitly model and codify the workflows of
how we do tasks. This codification becomes the ‘language’ of our work and helps de-
fine the tooling points or points of interaction as we merge activities from multiple
disciplines in our domain. These workflow understandings also help us identify use-
ful points for APIs in our overall interoperability architecture. An excellent use of an
administrative ontology is to codify and model the workflow and approval steps as-
sociated with informal and formal content workflows in the organization. 

Some steps within  Figure 12-2 may not be active within an organization, such as
tagging or assigning metadata. Cases like this probably need to identify tasks in the
associated content creation and review where we can link metadata additions into
current workflows. These kinds of incremental additions to existing workflows con-
tinue to suggest the wisdom of breaking apart the individual steps in ontology cre-
ation and maintenance to  more atomic  parts,  such as  flagging a  new concept  or
adding to a semset label for an existing one. We may then slipstream these additional
steps into separate ontology suggestions that authorized editors review and vet be-
fore final acceptance. These steps, of course, and how we refer to them, may vary
across  circumstances  and  organizations.  Nonetheless,  we  may  apply  the  general
ideas of work steps, approval types, and users to any formal or informal workflow
that presently exists.

These considerations provide the rationale for assigning metadata that character-
izes our information objects and structure. We should base this metadata on con-
trolled vocabularies and relationships in domain and administrative  ontologies, as
determined by their users (knowledge workers). The vocabularies and the tagging of
information objects with them are a first principle for ensuring how we can find and
transition states of information. These vocabularies need not be elaborate, but they
should be constant and consistent across the entire content lifecycle. Backbone as-
pects of these vocabularies should capture the overall information workflow, as well
as concrete steps for individual tasks. As a complement to such administrative on-
tologies, domain ontologies provide the context and meaning (semantics) for our in-
formation.

This common grounding of data model and semantics means we can connect our
sources of information. The properties that define the relationships between things
determine the structure of our knowledge graph. Seeking commonalities for how our
information sources relate to one another helps provide a coherent graph for draw-
ing inferences. How we describe our entities with attributes provides a second type
of property. Attribute profiles are also a good signal for testing entity relatedness.
Properties — either relations or attributes — give another filter to draw insight from
available information.

If the above sounds like a dynamic and fluid environment, you would be right. Ul-
timately,  knowledge  is  a  challenge  in  a  technology  environment  that  is  rapidly
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changing. New facts, perspectives, devices, and circumstances are continually aris-
ing. For these very reasons a knowledge management framework must embrace the
open world assumption (see Chapter 9), wherein we can grow and extend the underlying
logic structure and its vocabulary and data at will. 

Though perhaps not quite at the level of a first principle, I also think KM im-
provements should be easy to use, easy to share, and easy to learn. I imply tooling in
this, but also it is important we be able to develop a language and framing for what
constitutes our knowledge domain. We should pursue the question of interoperabil-
ity to discover insights and gain efficiencies. The thing about interoperability is that
it extends over all aspects of the information lifecycle, from capturing and creating
information, to characterizing and vetting it, to analyzing it, or publishing or dis-
tributing it. Eventually, information and content already developed become input to
new plans or requirements. These aspects extend across multiple individuals and de-
partments and even organizations, with portions of the lifecycle governed (or not) by
their own set of tools and practices. 

Today, overall, we only embrace pieces of this cycle in most daily workflows. Edi-
torial review and approvals, or database administration and management, or citation
gathering or reference checking, or data cleaning, or ontology creation and manage-
ment, or ETL activities, or hundreds of other specific tasks, sit astride this general
backbone. Besides showing that interoperability is a systemic activity for any organi-
zation (or should be), we can also derive a couple of other insights from Figure 12-2.
First, we can see that some form of canonical representation and management is cen-
tral to interoperability. The form need not be a central storage system, but can be
distributed using Web identifiers (IRIs) and protocols (HTTP). Second, we character-
ize and tag our information objects using ontologies, both from structural and ad-
ministrative viewpoints, but also by domain and meaning. We can combine and ana-
lyze our information when we characterize it with a common semantics.

A third insight is that a global schema (from the standpoint of the enterprise) spe-
cific to workflows and our content is a key for linking and combining activities at any
point within the cycle. A common vocabulary for stages and interoperability tasks,
included as a best practice for our standard tagging efforts, provides the conventions
for how batons can get passed between activities at any stage in this cycle. The chal-
lenge of making this insight operational is one more of practice and governance than
of technology. It should be a purposeful activity in its own right, backed with appro-
priate management attention and incentives.

An enabling mindset for the knowledge workers involved is to pay explicit atten-
tion to content workflows and common vocabularies for those flows and the infor-
mation objects they govern. This focus becomes the scaffolding for an administrative
ontology and a basis for investigating tooling and automation in processing informa-
tion. We can already put in place chains of tooling and workflows to achieve a degree
of interoperability. We do not need to provide global answers or scope at the incep-
tion. We can start piecemeal, and expand as we benefit. The biggest gaps remain cod-
ification of workflows for the overall information lifecycle, and the application of
taggers to provide the workflow and structure metadata at each stage in the cycle.
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Again, these are not matters so much of technology or tooling, but willingness, and
policy and information governance.

PLATFORM CONSIDERATIONS

Semantic technologies have not yet reached the point of fulfilling their prophecy
nor of being sufficiently buzz-worthy to fuel their demand.1 Enterprise customers
are intrigued with the idea of semantic solutions but remain skeptical. Better search
is often the crucial leverage point in the sale. Enterprises do not seem interested in
linked data alone (if at all), though some like the idea of possibly contributing linked
data back to others. On the other hand, all enterprises competing in the current en-
vironment understand that knowledge, and their use and management of it, is per-
haps the pivotal factor in their relevance and survival.

I have had the good fortune to work with some cutting-edge, reference enterprise
deployments  of  semantic  technologies.  These  efforts  in  enterprise-scale  systems
have been eye-opening. We have opened one eye for how semantic technologies need
to integrate and adapt to existing enterprise practices and deployments. We have
opened the other eye to see how semantic technologies should be presented and sold
to internal enterprise stakeholders.

We have a working example in the Open Semantic Framework that shows the way
for how a few common representations and conventions can work to distribute both
schema and information (data) across a potentially distributed network. Further, by
not stopping at the water’s edge of data interoperability, we can also embrace fur-
ther, structural characterizations of our content. Adding this wrinkle enables us to
support a variety of venues for content consumption simultaneously and efficiently,
as well as to broaden our leverage of the knowledge asset through cheaper, more
streamlined machine learning and artificial intelligence. What I set out in the next
section  are  the  multiple  purposes  and  the  ontology-driven  aspects  of  a  general
knowledge representation and management platform to support enterprise aims.

Supporting Multiple Purposes

Our avowed purposes in data interoperability and KBAI, supported by general KM
(knowledge management) uses, sets the overall application scope for our platform.
At the same time, we understand that particular uses of the platform will vary by do-
main, desired application emphases, and the actual instance data. We further assume
that initial demands and scope may warp and grow as we experience platform re-
sults, and external demands dictate. All of these considerations demand a platform
design that is open, modular, and extensible, capable of supporting multiple pur-
poses (and, thus, cost justifications). We need to put forward reasonable projected
benefits that greatly exceed development costs, and then to continue to justify such
assertions to sustain a healthy, dynamic knowledge management system. Specific do-

1 See Chapters 15 and 16.
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main applications are surely the instrumental justification for an initial installation,
but an adaptive KM platform should also meet the two core requirements of search
and knowledge management.

Search

Enterprises, familiar with structured query language (SQL), have understood for
quite  some time  that  queries  and  search  are  more  than  text  searches  to  search
engines.  Semantic  technologies  have  their  structured  query  approach,  SPARQL.
State-of-the-art semantic search has found a way to combine these various underly-
ing retrieval engines with the descriptive power of the graph and semantic technolo-
gies to provide a universal search mechanism across all types of information stores.
The simplest way to understand semantic search is  to de-construct the basic RDF
triple down to its fundamentals. This first observation is that the RDF data model can
represent anything, that is, an object or idea. Moreover, we can represent that object
in virtually any way that any viewer would care to describe it, in any language. In se-
mantic search, we may derive facets from not only what types of things exist in the
search space, but also what kinds of attributes or relations connect them. Gratify-
ingly, this all comes for free. Unlike conventional faceting, no one needs to decide
what are the important ‘dimensions’ or any such. With semantic search, the very ba-
sis  of  describing the domain at  hand creates  an organization of  all  things in the
space. 

In  semantic  search,  every property represents  a  different  pathway,  and every
node is an entry point. SPARQL enables us to pose queries, including with variables,
which can navigate and slice-and-dice the information space into usable results sub-
sets at will. We do not need to state all of the relationships and types of things in our
information space; we can infer them from the assertions already made. We can use
these broad understandings of our content to do better targeting, tagging, highlight-
ing or relating concepts to one another. The fact that semantic search is a foundation
for semantic publishing is noteworthy. 

We first adopted Solr (and then Lucene) because traditional text search of RDF
triple stores was not sufficiently performant and made it difficult to retrieve logical
(user) labels in place of the IRIs used in semantic technologies. In our design, the
triple store is the data orchestrator. The RDF data model and its triple store are used
to  populate  the Solr  schema index.  The structural  specifications  (schema)  in  the
triple store guide the development of facets and dynamic fields within Solr. These
fields and facets in Solr give us the ability to gain Solr advantages such as aggregates,
autocompletion, filtering, spell checkers and the like. We also can capture the full
text if the item is a document, enabling us to combine standard text search with the
structural aspects orchestrated from the RDF. On the RDF side, we can also leverage
the schema of the underlying ontologies to do inferencing (via forward chaining). We
have been able  to  (more-or-less)  seamlessly  embrace geo-locational based search,
time-based search, the use of multiple search profiles, and switchable ranking and
scoring approaches based on context (using Solr’s powerful extended disMax edismax
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parser).12 This  combination  gives  us  an  optimal  search  platform  to  do  full-text
search, aggregates, and filtering.

Knowledge Management

Our earlier Figure 12-1 showed the two bracketing left- and right-work areas in se-
mantic technologies. These are the very same knowledge graph (TBox) and instance
data (ABox) areas that form the knowledge base that our KM system must manage.
Here are some of the tasks we need to manage: 1) insert and update concepts in the
upper ontology; 2) update and manage attributes and track specific entities as new
sources of data are entered into the system; 3) establish coherent linkages and rela-
tions between things; 4) ensure these updates and changes are done wholly and con-
sistently, while satisfying the logic already in place; 5) update how we name and re-
fer to things as we encounter them; 6) understand and tag our content workflows
such that we can determine provenance and authority and track our content; and 7)
do these tasks using knowledge workers, who already have current tasks and activi-
ties. 

These actions should be continuous, and established procedures with annotations
and logging should govern them. The entire premise of a knowledge management
system is to keep current and up-to-date. This need for currency means that use and
updates of the semantic technologies portion, which is the organizing basis for the
knowledge in the first place, must be part of daily routines and work tasking, subject
to management and incentives. Responsive, tailored tooling linked to current work-
flows is  the technical  requirement. Management procedures and training need to
complement the technology to ensure the human factors are also in place.

An Ontologies-based Design

We have seen that an upper ontology governs the overall knowledge graph, with
typologies and domain ontologies tailoring the scope and providing instance cover-
age. We have also seen, in the case of the content lifecycle, where we can capture
content workflows and approvals into metadata that tracks content across the sys-
tem and provides  provenance information using an administrative  ontology.  The
platform should also provide a standard set of access and retrieval services including
browse, full-text search, CRUD, direct record retrievals, and the like. We may embed
these within an access and permissions service, also governed by an administrative
ontology, that acts at the level of registered datasets (see next section). We should
also design our queries and requests to the platform to include a parameter for get-
ting results sets in particular formats such as XML or JSON or RDF (various flavors),
or others of domain importance. Administrative ontologies can also guide how HTML
pages and forms are dynamically populated, often contextually, based on standard
SPARQL queries. For specific purposes, we can also return these results sets as pre-
staged, properly formatted results streams (usually in the form of SPARQL queries)
for driving particular applications. We only need to add a basic converter to the plat-
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form’s Web services stack to ‘drive’ a new application in a specific format.
As explained in the concluding section of this chapter, we recommend packaging

these platform capabilities as Web services that we can interact with and drive via
standard HTTP requests using standard application programming interfaces (APIs). Al-
ternatively,  we can issue these requests from simple to comprehensive Web apps
that create the API queries based on user interface choices such as selections from
dropdown lists or clicking on various listed options. The platform thus acts as a sin-
gle, uniform Web interface to all of the capabilities of the structured data system or-
ganized by the adaptive ontologies. Further, we may ingest virtually any data struc-
ture and convert it  via  an import  service  made part  of  the underlying canonical
structure. Lastly, the dataset nature of the framework, and its neutrality to underly-
ing data stores or content management systems, also makes the platform an excel-
lent framework for one or many nodes to share information and collaborate across
the Web.

‘Ontology-driven apps’ through this platform design thus provide two profound
benefits. First, once we write the templates, we can drive the entire system via sim-
ple Web form selections or interactions without the need for any programming or
technical expertise. Second, we can power entirely new applications through the ad-
dition of new, minor output converters. These potentials arise from the native power
of the design basis for ontology-driven apps. Conceptually, the design is simplicity it-
self.  Operationally,  the  system  is  extremely  flexible  and  robust.  Strategically,  it
means our development and specification efforts may now move from coding and
programmers to the subject matter users who define ontologies and depend on them.

Enterprise Considerations

Security is an additional enterprise requirement that warrants particular atten-
tion. Whether profit or non-profit, all enterprises are unique, with potential propri-
etary information both internally and externally (with the public or possible com-
petitors). Though individual consumers also have requirements for privacy and con-
fidentiality, these information flows are strictly between the individual and outside
entities. In an enterprise, access may occur and be among many internal individuals
and all of their external contacts. Access control is the protection of resources against
unauthorized access. It is a process by which use of resources is regulated according
to a security policy and is permitted by only authorized system entities according to
that policy.13 

We  may  provide  access  control,  like  many  other  enterprise  considerations,
through a third-party application, by an administrative ontology linked to other fea-
tures tagged in the knowledge store, or both. As one example, we have provided ac-
cess control in some installations of the Open Semantic Framework using a three-di-
mensional matrix of datasets, users/groups, and CRUD rights to tools/endpoints. A
dataset refers to a named grouping of records, best designed as similar in record
types and intended access rights (though technically a dataset is any named group-
ing of records). We need to first grant access for given user/group to a particular
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Web service, and specify whether that user has CRUD (create – read– update – delete)
rights in whole or part to interact with specified datasets within the knowledge base.
It is in the nexus of user type, a tool (API), and dataset that we may establish access
control for the semantic system.

In  an  enterprise  context,  a  given  individual  (user)  may  have  different  access
rights depending on circumstance. A worker in a department may be able to see and
do different things for departmental information than for enterprise information. A
manager may be able to view budget information that is not readable by support per-
sonnel. A visitor to a different Web site or portal may see different information than
visitors to other Web sites. Supervisors might be able to see and modify salary data
for individual employees that is not viewable by others. The user role or persona
thus becomes the access identifier to the system. As system managers,  we define
what information and what tools users might use for the datasets for which they
have access.

The combination of datasets * tools * roles can lead to many access permutations.
With, say, 20 tools with five different roles and just ten different datasets, we already
have about 1,000 permutations. As portals and dataset numbers grow, this combina-
torial explosion gets even worse. Of course, not all combinations of datasets, tools,
and roles make sense. In fact, only a relatively few number of patterns covers 95% or
more of all likely access options. Because access rights are highly patterned, these
theoretical combinations can, in fact, be boiled down to a small number of practical
templates — which we call  profiles — to which we may assign a newly registered
dataset or user. (Of course, the enterprise could also tweak any of the standard pro-
files to meet any of the combinatorial options for a specific, unusual individual, such
as for a tax auditor.)

Another enterprise consideration relates to training. Inter-team communications
must be grounded in shared vocabulary and concepts. Even then, it is still necessary
to continuously describe and explicate the benefits due to semantic approaches over
conventional ones. Because of its general foundational nature, semantic approaches
are often hidden or at the core of the information solution. It is not always self-evi-
dent what the advantages of semantic approaches are because their results can be
mimicked via conventional approaches (though at a higher cost with greater brittle-
ness). Semantic concepts are not (generally) intuitive to content editors, information
architects, project managers or fellow developers or project vendors. It is imperative
to engage in continuous training and knowledge transfer during a semantic deploy-
ment. Unlike just a few years back, we no longer see resistance to open source solu-
tions. In fact, for early semantic adopters, open source is a positive feature. However,
open source in a complicated enterprise environment comes with challenges. Sup-
port is often weak and integrating the pieces becomes one of the project responsibili-
ties and risks. Open APIs and Web service endpoints still can lead to integration chal-
lenges. Encoding mismatches or how error messages get generated or treated, as two
examples, point to some of the challenges in creating an integrated enterprise envi-
ronment from multiple open source pieces.

Enterprise funding is still another concern. Enterprise IT budgets have come un-
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der pressure. The justification for many projects resides in being able to offset an-
nual licensing and maintenance fees, which can impose delivery constraints based on
renewal dates. Existing enterprise IT budgets have also been made more incremental,
with milestone achievements often required for moving forward. These trends are
putting a premium on agile development and the need for enterprise-scale deploy-
ment and testing tools. Repeatable build processes and scripts are an essential com-
ponent now for complex stack deployments.

Many of the issues that emerge in enterprise deployments are ancillary to or in-
dependent of specific knowledge components. Logging, testing, security, access, ser-
vice buses and deployment builds are an umbrella over entire deployments. In these
regards, too, we must adhere to enterprise build practices and standards. The fre-
quency of repeating builds and testing means we need to create scripts for these
steps  and  improve  deployment  documentation  and  practices.  In  these  regards,
knowledge and semantic technologies are no different from other components in the
broader, enterprise-wide stack.

Another reality of semantic technologies in the enterprise is that few champions
and advocates exist within many organizations. We must find means to communicate
to semantic newbies and to enlist the aid of champions in carrying the message for-
ward within the organization. In multi-vendor deployments, we should seek single
points of contact able to communicate with their colleagues. In turn, the consumers
of knowledge applications – namely subject matter experts, employees, partners, and
stakeholders – now become the active contributors to the graphs themselves, focus-
ing on reconciling terminology and ensuring adequate entity and concept coverage.
Graph-driven applications mean that those closest to the knowledge problems will
also be those directly augmenting the graphs. These changes act to democratize the
knowledge function and lower overall IT costs and risks.

A WEB-ORIENTED ARCHITECTURE

Web-oriented architecture, or WOA, is a subset of the service-oriented architectural
(SOA) style, wherein we package discrete functions into modular and shareable ele-
ments (‘services’) that we make available in a distributed and loosely coupled man-
ner. WOA uses the representational state transfer (REST) style, geared to the HTTP
hypertext transfer model.  Roy Fielding defined the REST architectural style in his
2000 doctoral thesis.14 Fielding is also one of the principal authors of the Hypertext
Transfer Protocol (HTTP) specification. We couch WOA guidelines within the frame-
work of a generalized architectural style, and while not limited to the Web, are a foun-
dation for it.

Nick Gall, a Gartner analyst, was one of the first to coin the WOA moniker. Gall de-
scribes WOA as based on the architecture of the Web as aq “globally linked, decen-
tralized, and [with] uniform intermediary processing of application state via self-de-
scribing messages.” REST provides principles for how resources are defined and used
and addressed with simple interfaces without additional messaging layers such as
SOAP or RPC. REST and WOA stand in contrast to earlier Web service styles known by
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the WS-* acronym (such as  WSDL). WOA has proven highly scalable and robust for
decentralized users since all messages and interactions are self-contained (convey
‘state’). It is not surprising that the largest existing knowledge networks on the globe
— such as Google, Wikipedia, Amazon, and Facebook — are Web-based. These pio-
neers have demonstrated the wisdom of WOA for cost-effective scalability and uni-
versal access.

We recommend a WOA architecture for knowledge management and representa-
tion purposes. Like the Internet itself, WOA has the advantage of being scalable and
distributed, all (mostly) based on open standards. RESTful application programming
interfaces (APIs) extend interoperability to outside systems and provide flexibility
for swapping in new features or functionality as new components or developments
arise.  Under this design, all  components and engines (‘services’)  become in effect
‘black boxes,’ with information exchange via standard vocabularies and formats us-
ing APIs as the interface for interoperability.

Web-orientation and Standards

Two main reasons, plus a host of others, justify basing our KM architecture on the
Web. The first main reason is a crowning achievement of the semant  i  c Web  , which is
the simple use of uniform resource identifiers (URIs, now internationalized to IRIs) to
identify data. Further, if the resource identifier can resolve to a representation of
that data, it now becomes an integral part of the  HTTP access protocol of the Web
while providing a unique identifier for the data. The HTTP protocol is the second
main reason, through which we gain access to a global, distributed network. These
innovations provide the basis for distributed data at global scale, all accessible via
Web devices such as browsers and smartphones that are now a ubiquitous part of our
daily lives. The combination of RDF with Web identifiers also means that we may ex-
pose any information from a given knowledge repository and make it available to
others as linked data. This approach makes the Web a universal database.

We often think of HTTP as a communications protocol, but it is much more.15 It
represents the operating system of the Web as well as the embodiment of a design
philosophy and architecture. Within its specification lies the secret of the Web’s suc-
cess. REST and WOA quite possibly require nothing more to understand than the
HTTP specification. HTTP provides the distinctions of GET and POST and persistent
IRIs and the need to maintain stateless sessions with an  idempotent design. HTTP
also provides for content and serialization negotiation, and error and status mes-
sages for HTTP requests. HTTP also includes: language, character set, encoding, seri-
alization and mime type enforced by header information and conformance with con-
tent negotiation; common and consistent terminology to aid understanding of the
universal interface; a resulting component and design philosophy that is inherently
scalable and interoperable; and a seamless consistency between data and services.
CRUD is readily applicable to HTTP.

Besides these reasons, WOA is consistent with the many open Web standards we
use in KBpedia and our platform designs. See further Chapter 9.
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A Modular Web Services Design

I  have emphasized two themes throughout this  chapter.  The first  theme is  to
scope and bound functionality related to design needs. The second theme is to inte-
grate these functions within current content workflows. We express these themes
using  individual  RESTful  Web  services  in  our  design,  as  exposed  and  accessed
through their application programming interfaces (APIs). We have already seen how the
WOA approach enables us to use the HTTP protocol for accessing RESTful Web ser-
vices. The specific scoping and design of the functional modules provide the comple-
mentary part of the overall design. Since the resulting APIs are independent of any
particular operating environment, we can reduce implementation costs for multi-
platform user agents and promote the development of multi-platform services. 

We determine the modularity of the services through analysis of the work tasks
(see Figure 12-1). Where appropriate, we embed these modules into other current ap-
plications or workflows (Figure 12-2). Enterprise considerations such as security, ac-
cess control, or workflow management enter in at this point to help complete the
roster of desired services. These definitions help provide the boundary responsibili-
ties of each Web service and what types of API instructions they may need. Platform-
wide requirements, such as access control, must inform some of these needs. 

We tend to follow a few guidelines in designing our Web services. We emphasize
1) use of a canonical, internal data representation format; 2) unit testing for all ser-
vices; 2) attentiveness to error numbering and conformity of error messages, some of
which we discover during testing; 3) similar granularity and order for specifying pa-
rameters across the APIs; 4) provision of online demo examples; 5) standard import
and export formats; and 6) dual access to the API via SPARQL and programmatically.
We tend to use a ‘triples’ or N3 RDF format for our internal canonical representation,
which has a standard specification. (We also allow multiple import or export formats
beyond the internal canonical form.)  The provision for dual access to the APIs gives
us the standard query basis of SPARQL, plus faster programmatic calls when using in-
ternal network transfers. 

The size of payloads in both query results and as results set objects can be a chal-
lenge for RESTful Web services. Long HTTP queries with many parameter requests
and large results sets can be a problem to handle, especially in the security layer. In
some cases, we may need to look at ways to minimize and package (consolidate) pa-
rameter options to make endpoint requests more efficient. Encoding mismatches are
a further challenge. It is best, for example, to adhere to a standard UTF-8 encoding
via all semantic component interfaces. Consistent encoding requires attention and
coordination on both sides of the interface and in tool use,  especially the use of
spreadsheets or CSV files.

The more fundamental challenge, however, is one of mindset. Effective interfaces
require effective communications of the participating vendors across the boundary.
The terminology, concepts, logic and open-world approach to knowledge manage-
ment and semantic technologies are not easily communicated nor immediately un-
derstood by traditional vendors. We must continuously work on communications to
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overcome past practices  and embrace the flexibilities  provided by semantic tech-
nologies.

REST Web services16 and linked data are naturally compatible approaches. Linked
data is a set of best practices for publishing and deploying data on the Web using the
RDF data model. The data objects are named using Web uniform resource identifiers
(IRIs), emphasize data interconnections, and adhere to REST principles. We also see
the ideas of RESTful Web services morph into ones with more limited and targeted
functionality. These  microservices have a broad swath of definitions. Some of the
narrower ones, including in their ideas of choreographing and aggregating multiple
small services, bear a close resemblance to the particular flavor of Web services that
we recommend.

An Interoperability Architecture

Figure 12-3 presents our generic architecture for this WOA design. The three tiers
of the system are content acquisition, the repository, and content consumption:
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We have tended to abstract our WOA services into simple and compound ones
(which are combinations of the simple). All Web services have uniform interfaces and
conventions and share the error codes and standard functions of HTTP. We further
extend the WOA definition and scope to include linked data, which is also RESTful.
Thus,  our WOA also sits atop an RDF (Resource Description Framework)  database
(‘triple store’) and full-text search engine. 

The content acquisition tier is where all information comes into the system. For
new sources, this involves mapping the concepts and other conformities to the exist-
ing knowledge graph. Already mapped sources and concepts require fewer integrity
checks when we add instances or updates. Because we are using semantic technolo-
gies, we are agnostic as to the content source and can handle most any content. The
content ingestion step is where we employ the limited number of canonical forms
and use RDF as our data transfer model (see Chapter 9).

The repository tier is where the knowledge graph, knowledge base, triple store,
OWL API, and full-text search engine reside. Most all knowledge management (KM)
functions reside in this tier. All ontologies and their management reside at this tier.
The full-text search engine and triple stores are mostly agnostic third-party systems.
While some differences in open source search engines and triple stores exist, we may
plug most into the design. We have used Jena and Virtuoso as triple stores in the
past, as well as the Lucene and Solr search engines. Many other options exist.

Many of the specialized work functions shown in the middle sections of Table 12-1
and Figure 12-1 reside in the bottom (as shown in Figure 12-3) content consumption
tier. Within this tier, we may move some content to an archive data store, or we may
transform subsets for machine learning purposes or to re-purpose existing content.
Some of the transformations at this tier are merely transfer conventions with an ex-
ternal application. In addition to such tailored forms and their dedicated Web ser-
vices, we also make available the general output in a variety of standard formats.
Note that the content re-use and mapping layers, as well as the repository, use the
internal canonical data representation.
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