
Available Article

Author’s final: This draft is prior to submission for publication, and the
subsequent edits in the published version. If quoting or citing, please refer to the
proper citation of the published version below to check accuracy and pagination.

Cite as: Bergman, M. K. Platforms and Knowledge Management. in A Knowledge
Representation Practionary: Guidelines Based on Charles Sanders Peirce (ed.
Bergman, M. K.) 251–272 (Springer International Publishing, 2018).
doi:10.1007/978-3-319-98092-8_12

Official site: https://link.springer.com/book/10.1007/978-3-319-98092-8

Full-text: http://www.mkbergman.com/publications/akrp/chapter-12.pdf

Abstract: One can create a proper enterprise knowledge management
environment at acceptable cost using available open-source components and solid
architectural design. Component services provide ontology and knowledge
management functions in piecemeal functionality that we can integrate directly
into existing workflows. These requirements mean that use and updates of the
semantic technology portion, the organizing basis for the knowledge in the first
place, must be part of daily routines and work tasking, subject to management and
incentives.

https://link.springer.com/book/10.1007/978-3-319-98092-8
http://www.mkbergman.com/publications/akrp/chapter-12.pdf

12

PLATFORMS AND KNOWLEDGE MANAGEMENT

aving discussed terminology and components in previous chapters, now let
us turn our attention in this Part IV to building an actual knowledge represen-

tation system. The major theme of the effort is to obtain maximum value from the
work of converting and integrating data not only to achieve the aims of data interop-
erability and knowledge-based artificial intelligence (KBAI) but to leverage maximum
benefits from knowledge management as well. We follow this chapter on platforms
with two additional chapters in Part IV on how to build out and tailor a system for
your own domain needs and on testing and best practices.

H

The material in these three chapters draws on our experience in building seman-
tic technology platforms for a variety of clients and applications over the prior
decade.1 In various guises and tailorings, we have created standalone and Drupal-
based platforms using PHP, and have created standalone systems using the Clojure
language. Though we have released portions of these efforts as open source — Clo-
jure components related to KBpedia, and PHP and Drupal frameworks for the Open
Semantic Framework (OSF) — we are not prescriptive in this chapter or elsewhere in
the book about how to build a KR/KM platform. Rather, we emphasize guidelines and
lessons learned versus any specific design or language. Platforms will continue to
emerge and evolve, and what we should seek from those platforms regarding design
and architecture is of more guiding importance than any specific instantiation.

We begin this chapter by critically reviewing the work objectives of a platform.
These functional understandings are related to the earlier TBox and ABox splits we
discussed for description logics in Chapter 8. We also discuss the importance of content
and general workflows. From this basis, we then proceed to look at platform consid-
erations. As noted in Chapter 4, the platform should support three main opportunities
in general knowledge management, data interoperability and knowledge-based artificial in-
telligence (KBAI). We also discuss access control and governance, and other enterprise
considerations. The last section of this chapter deals with the overall Web-oriented ar-
chitecture, emphasizing the importance of Web connectivity and the use of modular

237

http://opensemanticframework.org/
http://opensemanticframework.org/
https://github.com/Cognonto/kko
https://en.wikipedia.org/wiki/Clojure
https://en.wikipedia.org/wiki/PHP
https://en.wikipedia.org/wiki/Drupal

A KNOWLEDGE REPRESENTATION PRACTIONARY

Web services for scalability and flexibility. The entirety of these considerations helps
us set the overall guidelines for the design and architecture for a responsive knowl-
edge representation and management platform.

USES AND WORK SPLITS

To contemplate what a knowledge representation platform should look like, we
first need to define what kinds of work we anticipate the platform to do. These work
requirements are related to the purposes we have for the platform, as well as the ex-
isting state of tooling and applications available to support them. (Chapters 15 and 16
offer additional use cases.) Workflows are also intimately tied to these questions.

The State of Tooling

I have been tracking and documenting the state of semantic technology, graphics
visualization, and knowledge management tooling for nearly two decades. For many
years I maintained Sweet Tools, a searchable and faceted compendium of semantic
technologies that grew to a listing exceeding 1000 tools, the most comprehensive
available.2 In our platform work, we have used and integrated some of the leading
tools available from this listing. We have also extended and created many of our tools
and ontologies that we have contributed back to the community as open source.3

We now have much tooling and demo experience to draw upon since the seminal
article on the semantic Web appeared in the Scientific American in 2001.4 The primary
sources for supporting the semantic Web are the European Union, mostly for aca-
demics, and the US government, mainly for intelligence and biomedical purposes to
academics and businesses alike.

In the early years, ontology standards and languages were still in flux, and the
tools basis was similarly immature. Frame logic, description logics, common logic
and many others were competing at that time for primacy and visibility. Practition-
ers based most ontology tools at that time such as Protégé,5 OntoEdit,6 or OilEd7 on F-
logic or the predecessor to OWL, DAML+Oil. The emergence of OWL and then OWL 2
by the W3C helped solidify matters. The University of Manchester introduced the
OWL API,8 which now supports OWL 2.9 Protégé, in version 5x, is now solely based on
OWL 2 and has become a popular open source system, with many visualization and
OWL-related plug-ins. A leading commercial editor is TopBraid Composer, which uses
the Eclipse IDE platform and Jena API.10 The OWL API is now a standard used by Pro-
tégé and leading reasoners (Pellet, HermiT, FaCT++, RacerPro). It supports a solid on-
tology management and annotation framework, and validators for various OWL 2
profiles (RL, EL, and QL).

RDF data management systems, or ‘triple stores,’ such as OpenLink’s Virtuoso,
Ontotext’s GraphDB, and Franz’s AllegroGraph, are now mature offerings. One may
also apply modifications of existing data stores by Oracle, MarkLogic, and a variety of
NoSQL databases to the design ideas presented herein. Developers presently have

238

https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/MarkLogic
https://en.wikipedia.org/wiki/Oracle_Database
https://en.wikipedia.org/wiki/AllegroGraph
https://en.wikipedia.org/wiki/Ontotext
https://en.wikipedia.org/wiki/Virtuoso_Universal_Server
http://www.topquadrant.com/products/TB_Composer.html
http://en.wikipedia.org/wiki/W3C
http://en.wikipedia.org/wiki/DAML%2BOIL
http://en.wikipedia.org/wiki/F-logic
http://en.wikipedia.org/wiki/F-logic
http://en.wikipedia.org/wiki/Prot%C3%A9g%C3%A9_(software)
http://www.mkbergman.com/sweet-tools/

PLATFORMS AND KNOWLEDGE MANAGEMENT

multiple open source and commercial options to choose from, including cloud op-
tions such as Amazon’s Neptune, for hosting RDF and OWL databases. The more com-
prehensive frameworks have opted to become ontology-engineering environments
and to provide all capabilities in one box via plug-ins.

 Java is the language of choice for about half of the semantic technologies, though
existing toolsets use more than a score of different languages. Academic tools are of-
ten the most innovative, but the degree of completeness is often frustrating and
most academic and grant-supported tools have limited or no support. Many, after a
single experimental release, are abandoned or see no further development. Newer
academic releases (often) are more strategically oriented and parts of broader pro-
grammatic emphases. Programs like AKSW from the University of Leipzig or the
Freie Universität Berlin or Finland’s Semantic Computing Research Group (SeCo),
among many others, are exemplars of this trend. Promising projects and tools are
now much more likely to be spun off as potential ventures, with accompanying bet-
ter packaging, documentation and business models.

Full-text search is weak in RDF triple stores, and many leading approaches now
match a text engine with the semantic portions. Some excellent components exist,
but not yet packaged into single-stop solutions as RedHat did with Linux. The ontol-
ogy tooling is especially difficult for standard knowledge workers to use, and the
coupling of tools into current, actual workflows is lacking. Our experience is that
most potential components are incompletely tested, and lack many basic expecta-
tions suitable for enterprise environments. Much scripting is necessary to glue to-
gether existing parts. However, some of the design guidance provided herein, espe-
cially about the use of canonical data forms, Web services, and suitable modular ar-
chitectures, can help overcome many of these problems. It is possible to create a
proper enterprise knowledge management environment at acceptable cost using
available open source components and solid architectural design. The Apache
Software Foundation is doing an especially good job of picking, incubating and sup-
porting a diversity of open source tools useful to semantic technologies. These tools
include Ant, Hadoop, HTTP server, Jackrabbit, Jena, Mahout, Marmotta, Maven,
OpenNLP, Singa, Stanbol, SystemML, Tika, Tomcat, UIMA, ZooKeeper, and the Lucene
and Solr search engines and Nutch crawler. Additional tooling that would make this
task easier still includes:

 Vocabulary managers — we lack easy inspection and editing environments for
concepts and predicates. Though standard editors allow direct ontology lan-
guage edits (OWL or RDFS), these are not presently navigable or editable by non-
ontologists. Intuitive browsing structures with more ‘infobox’-like editing envi-
ronments could be helpful here;

 Graph API — it would be wonderful to have a graph API (including analysis op-
tions) that could communicate with the OWL API. As a second option, it would
be helpful to have a graph API that communicates well with RDF and ontologies;

 Large-graph visualizer — while I have earlier reviewed large-scale graph visual-
ization software,11 with Gephi and Cytoscape being my two preferred alterna-

239

https://en.wikipedia.org/wiki/Cytoscape
https://en.wikipedia.org/wiki/Gephi
https://en.wikipedia.org/wiki/Infobox
https://en.wikipedia.org/wiki/Apache_Nutch
https://en.wikipedia.org/wiki/Solr
https://en.wikipedia.org/wiki/Lucene
https://en.wikipedia.org/wiki/Apache_ZooKeeper
https://en.wikipedia.org/wiki/Apache_UIMA
https://en.wikipedia.org/wiki/Apache_Tomcat
http://tika.apache.org/
https://en.wikipedia.org/wiki/Apache_SystemML
https://en.wikipedia.org/wiki/Apache_Stanbol
https://en.wikipedia.org/wiki/Apache_Singa
https://en.wikipedia.org/wiki/OpenNLP
https://en.wikipedia.org/wiki/Apache_Maven
https://en.wikipedia.org/wiki/Apache_Marmotta
https://en.wikipedia.org/wiki/Apache_Mahout
https://en.wikipedia.org/wiki/Jena_(framework)
https://en.wikipedia.org/wiki/Apache_Jackrabbit
https://en.wikipedia.org/wiki/Apache_HTTP_Server
https://en.wikipedia.org/wiki/Hadoop
https://en.wikipedia.org/wiki/Apache_Ant
https://en.wikipedia.org/wiki/Apache_Software_Foundation
https://en.wikipedia.org/wiki/Apache_Software_Foundation
https://en.wikipedia.org/wiki/Red_Hat_Linux
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Amazon_Neptune

A KNOWLEDGE REPRESENTATION PRACTIONARY

tives, they are neither easy to set up nor use. I would like more easily to select
layout options with quick zooms and scaling options;

 Graphical editor — some browsers or editors provide nice graph-based displays
of ontologies and their properties and annotations. However, the better design
we advocate here is to edit the ontology graph directly in its deployment envi-
ronment; and

 Component services — we recommend piecing out ontology and knowledge
management functions into individual components that we can integrate di-
rectly into existing workflows with minimal training.

TBox, ABox, and Work Splits

To better understand what kinds of functions we require and how they may relate
to existing tools or applications, recall the discussion of description logics in Chapter 8.
Description logics and their semantics traditionally split concepts and their relation-
ships from the different treatment of individuals and their attributes and roles, ex-
pressed as fact assertions. The concept split is known as the TBox (for terminological
knowledge, the basis for T in TBox) and represents the schema or taxonomy of the
domain at hand, what we also call the knowledge graph. The TBox is the structural and
extensional component of conceptual relationships. The second split of individuals is
known as the ABox (for assertions, the basis for A in ABox) and describes the attributes
of individuals, the roles between individuals, and other assertions about individuals
regarding their class membership with the TBox concepts. The ABox is the reposi-
tory for data records and can be a light layer over existing data stores. Both the TBox
and ABox are consistent with set-theoretic principles.

TBox and ABox logic operations differ, and their purposes vary. TBox operations
are based more on inferencing and tracing or verifying class memberships in the hi-
erarchy (that is, the structural placement or relation of objects in the structure).
ABox operations are more rule-based and govern fact checking, instance checking,
consistency checking, and the like. ABox reasoning is often more complicated and at
a larger scale than that for the TBox. However, even with these TBox and ABox splits,
we can also see that some work done by a knowledge management system falls out-
side of the specific purview of instances and concepts:

TBox Possibly Separate Work Tasks ABox

 Definitions of the concepts
and properties (relation-
ships) of the controlled vo-
cabulary

 Declarations of concept ax-
ioms or roles

 Inferencing of relationships,
be they transitive, symmet-

 Mappings are the core of in-
teroperability in that con-
cepts, and attributes get
matched across schema and
datasets

 Transformations are the
means to bring disparate
data into common grounds,

 Membership assertions, ei-
ther as concepts or as
roles

 Attributes assertions
 Linkages assertions that

capture the above but
also assert the external
sources for these assign-

240

http://en.wikipedia.org/wiki/Set-theoretic

PLATFORMS AND KNOWLEDGE MANAGEMENT

TBox Possibly Separate Work Tasks ABox

ric, functional or inverse to
another property

 Equivalence testing as to
whether two classes or
properties are equivalent
to one another

 Subsumption, which is
checking whether one con-
cept is more general than
another

 Satisfiability, which is the
problem of checking
whether a concept has been
defined (is not an empty
concept)

 Classification, which places a
new concept in the proper
place in a taxonomic hier-
archy of concepts

 Logical implication, which is
whether a generic relation-
ship is a logical conse-
quence of the declarations
in the TBox

 Infer property assertions im-
plicit through the transi-
tive property

the second leg of interoper-
ability

 Entailments, which are
whether the stated condi-
tion implies other proposi-
tions

 Instance checking, which
verifies whether a given in-
dividual is an instance of
(belongs to) a specified
concept

 Knowledge base consistency,
which is to verify whether
all concepts admit at least
one individual

 Realization, which is to find
the most specific concept
for an individual object

 Retrieval, which is to find
the individuals that are in-
stances of a given concept

 Identity relations, which is to
determine the equivalence
or relatedness of instances
in different datasets

 Disambiguation, which is re-
solving references to the
proper instance

 Machine learning based on
entities and features in the
knowledge base

ments
 Consistency checking of in-

stances
 Satisfiability checks, which

are meeting the condi-
tions of instance mem-
bership

Table 12-1: Possible Work Activities in a Knowledge Management Platform

Searching across the entire database or conducting machine learning, as examples,
are such functions that work against the whole knowledge structure, or which pose
work requirements orthogonal to the TBox-ABox splits. Table 12-1 summarizes how
we may segregate these significant work areas against the TBox, the ABox, or possi-
bly separate to them.

The TBox should be a coherent structural description of the domain, which ex-
presses itself as a knowledge graph with meaningful and consistent connections
across its concepts. Somewhat irrespective of the number of instances (the ABox) in
the knowledge base, the TBox is relatively constant in size given the desired level of
descriptive scope for the domain. (In other words, the logical model of the domain is
mostly independent of the number of instances in the domain.) As its name suggests,
the TBox is where we define terminology for the vocabulary of the domain, the pred-
icates used, and the relationships of those concepts to one another via the predicates

241

A KNOWLEDGE REPRESENTATION PRACTIONARY

available. A key aspect of the TBox functionality is classification through subsump-
tion hierarchies, from which we set much of the logic and inferencing capabilities of
the structure. The TBox also requires checks during its building and maintenance to
ensure that we have provided complete definitions (satisfiability) and consistency and
logic tests to make sure our placements within the knowledge graph remain consis-
tent and coherent.

The ABox of instances consists of the specific individual things in the KB that are
relevant to the domain. Instances can be many or few, as in the millions within KBpe-
dia, accounting for 90% or more of the total number of objects in the knowledge base.
We characterize instances by various types of structured data, provided as attribute-
value pairs, and which we describe with long or short texts and with multiple aliases
and synonyms, and we relate to other instances via type or kind or other relations,
possibly in multiple languages.

We can perhaps better illustrate this work split with Figure 12-1 showing the inter-
actions of all of these contributing parts:

242

Figure 12-1: Possible Work Splits in a KM Platform

mike
Stamp

PLATFORMS AND KNOWLEDGE MANAGEMENT

Whether a single database or the federation across many, we have data records (in-
stances in the ABox) and a logical schema (ontology of concepts and relationships in
the TBox) by which we try to relate this information. As Table 12-1 and Figure 12-1
show, the TBox is where the reasoning work occurs; the ABox is where assertions and
data integrity occurs. This meaningful work broadly relates to the growth and main-
tenance of the knowledge base itself. For instance, all aspects of ontology editing re-
late to these components, as do logic, consistency, coherency and satisfiability
checks. These portions are essential to the integrity of the knowledge structure via
its editing and maintenance but represent very little of the desired work we want to
extract from the knowledge structure. These work tasks are separate from the needs
of the TBox and ABox themselves.

The middle column of Table 12-1 and Figure 12-1 list some of those work tasks that
reside outside of the knowledge graph and knowledge base build and maintenance
tasks. Some of these tasks may apply across the entire knowledge structure, such as
search or retrieval. Other tasks are specialized ones that may involve subsets of the
structure or dedicated extractions of one form or another.

What the Figure 12-1 readily shows is that platforms with only semantic technolo-
gies lack the major work functions desired. It is this gap to bring in and facilitate
dataset exchanges to external applications that most requires tailored scripting for
specific installations (along with the need to create the domain knowledge graph and
ingest data, of course). It is why standalone semantic technology platforms have not
been, generally, commercially successful. Not shown in the figure is the further gen-
eral weakness of semantic technology platforms; namely, they are hard to learn and
use. We need more visual frameworks with well-segregated tasks, such as what we
are beginning to see in such tools as the SKOS-based PoolParty.

Providers have increasingly embraced platforms that integrate conventional text
search engines, such as Solr, for generalized retrieval, plus use in instance and con-
sistency checks. However, critical areas such as mappings, transformations, and
identity evaluation remain weak. Mappings refer to the suite of aids that suggest
matching correspondences between objects in the domain knowledge base with ex-
ternal sources, with choices often manually vetted. Transformation is the ability to
convert subsets of the knowledge graph to the dataset format required by various ex-
ternal applications. These include machine learning, AI, or specialized natural lan-
guage processing (NLP) like parsing into parts of speech or transforming external
sources into new records or updating the knowledge base. Identity evaluation means
to contextualize a possible entity reference to its disambiguated actual subject. Main-
taining identity relations and disambiguation as separate components also has the
advantage of enabling us to swap out different methodologies or algorithms as better
methods become available. We could apply a low-fidelity service, for example, for
quick or free uses, while we reserve more rigorous methods for paid or batch mode
analysis. We may deploy any of these mapping, transformation, or identification ac-
tivities as a Web service, preferably using an internal canonical data transfer form,
discussed further toward the end of this chapter.

Breaking our description logics design into the TBox and ABox, and then enumer-

243

http://en.wikipedia.org/wiki/Solr
https://www.poolparty.biz/

A KNOWLEDGE REPRESENTATION PRACTIONARY

ating the work tasks we wish to do against these structures, helps us to think
through the modularity and architecture we want to see in our actual deployments.
The practical aspects of our work tasks and where and how they should occur be-
come clearer. We know that we can architect a framework that is amenable to swap-
ping in and out different analysis methods, and that can be modular to use or not dif-
ferent work tasks and applications. Here are some general principles that should ap-
ply to most domain installations:

 We want to handle our concepts, and their definitions and relationships (TBox)
separate from our instance data, and subject to rigorous testing, vetting, and
updating since this is the controlling logical structure of our knowledge man-
agement system;

 The task of knowledge graph creation and maintenance should be the responsi-
bility of knowledge workers and their management, not the IT department;

 We want to handle our instance data (ABox) separately and directly, using com-
paratively constant and readily understandable attribute-value pairs;

 We can re-use these instance records in varied and multiple worldviews in rela-
tion to different TBoxes or external applications; we can support these different
perspectives without affecting instance data in the slightest;

 We should approach architectural decisions from the standpoint of the work to
be done, leaving open unique analysis or tasks like disambiguation or full-text
search as functions, which may be added or not at another time;

 Ontologies should be modular, scoped according to appropriate user groups,
and kept as simple and easy to understand as possible; this is a significant ratio-
nale for the typology design discussed in Chapter 10. We should assert inter-ontol-
ogy relationships via a rather simple upper ontology, such as what is provided
by the KBpedia Knowledge Ontology;

 We may base mapping on suggestions from TBox (extensional) relationships or
ABox (intensional) relationships, and is a particularly weak yet important part
of tooling;

 We can treat logic and consistency testing as external applications, and conduct
them on scheduled or on-demand via services using canonical formats;

 We should evaluate instances separately from concepts, which also via triangu-
lation may aid such tasks as disambiguation or entity identification;

 We should include access control and governance (missing from Figure 12-1) in
most enterprise settings or where we use proprietary or private data;

 We can often keep instance records in situ, especially useful when incorporating
the massive amounts of data in existing relational databases;

 We may add to instance stores incrementally, via in situ or staged, following
these same design principles; and, given the discussion in Chapter 9; and

244

PLATFORMS AND KNOWLEDGE MANAGEMENT

 We should premise the entire system on continuous change given the nature of
knowledge and its openness.

Content Workflows

Two of these critical work splits are thus to: 1) keep knowledge updated; and 2)
directly involve knowledge workers and subject matter experts. These requirements
go hand and hand since the source of new knowledge comes from these workers and
their accumulated content in the first place. More simply put, to capture knowledge,
the systems to do so must be in the hands of the knowledge workers themselves, and
must integrate cleanly into their existing content workflows. It is inefficient not to
leverage existing workflows. Users will likely ignore new knowledge graph mainte-
nance and use tasks unless they are dead simple to implement. We best achieve adop-
tion through an incremental series of non-threatening tasks.

The following Figure 12-1 sketches out broad steps and interactions that one might
want to see in a content workflow:

Respect for workflows is the first principle when setting boundaries around func-
tional requirements. We express this respect in two different ways. The first is that

245

Figure 12-2: Content Workflows in a KM Platform

A KNOWLEDGE REPRESENTATION PRACTIONARY

we cannot unduly disrupt existing workflows when introducing interoperability im-
provements. While workflows can be improved or streamlined, new tools and prac-
tices must fit with existing ways of doing tasks to see adoption. Users mostly resist
jarring changes to existing work practices.

The second way is that we should explicitly model and codify the workflows of
how we do tasks. This codification becomes the ‘language’ of our work and helps de-
fine the tooling points or points of interaction as we merge activities from multiple
disciplines in our domain. These workflow understandings also help us identify use-
ful points for APIs in our overall interoperability architecture. An excellent use of an
administrative ontology is to codify and model the workflow and approval steps as-
sociated with informal and formal content workflows in the organization.

Some steps within Figure 12-2 may not be active within an organization, such as
tagging or assigning metadata. Cases like this probably need to identify tasks in the
associated content creation and review where we can link metadata additions into
current workflows. These kinds of incremental additions to existing workflows con-
tinue to suggest the wisdom of breaking apart the individual steps in ontology cre-
ation and maintenance to more atomic parts, such as flagging a new concept or
adding to a semset label for an existing one. We may then slipstream these additional
steps into separate ontology suggestions that authorized editors review and vet be-
fore final acceptance. These steps, of course, and how we refer to them, may vary
across circumstances and organizations. Nonetheless, we may apply the general
ideas of work steps, approval types, and users to any formal or informal workflow
that presently exists.

These considerations provide the rationale for assigning metadata that character-
izes our information objects and structure. We should base this metadata on con-
trolled vocabularies and relationships in domain and administrative ontologies, as
determined by their users (knowledge workers). The vocabularies and the tagging of
information objects with them are a first principle for ensuring how we can find and
transition states of information. These vocabularies need not be elaborate, but they
should be constant and consistent across the entire content lifecycle. Backbone as-
pects of these vocabularies should capture the overall information workflow, as well
as concrete steps for individual tasks. As a complement to such administrative on-
tologies, domain ontologies provide the context and meaning (semantics) for our in-
formation.

This common grounding of data model and semantics means we can connect our
sources of information. The properties that define the relationships between things
determine the structure of our knowledge graph. Seeking commonalities for how our
information sources relate to one another helps provide a coherent graph for draw-
ing inferences. How we describe our entities with attributes provides a second type
of property. Attribute profiles are also a good signal for testing entity relatedness.
Properties — either relations or attributes — give another filter to draw insight from
available information.

If the above sounds like a dynamic and fluid environment, you would be right. Ul-
timately, knowledge is a challenge in a technology environment that is rapidly

246

PLATFORMS AND KNOWLEDGE MANAGEMENT

changing. New facts, perspectives, devices, and circumstances are continually aris-
ing. For these very reasons a knowledge management framework must embrace the
open world assumption (see Chapter 9), wherein we can grow and extend the underlying
logic structure and its vocabulary and data at will.

Though perhaps not quite at the level of a first principle, I also think KM im-
provements should be easy to use, easy to share, and easy to learn. I imply tooling in
this, but also it is important we be able to develop a language and framing for what
constitutes our knowledge domain. We should pursue the question of interoperabil-
ity to discover insights and gain efficiencies. The thing about interoperability is that
it extends over all aspects of the information lifecycle, from capturing and creating
information, to characterizing and vetting it, to analyzing it, or publishing or dis-
tributing it. Eventually, information and content already developed become input to
new plans or requirements. These aspects extend across multiple individuals and de-
partments and even organizations, with portions of the lifecycle governed (or not) by
their own set of tools and practices.

Today, overall, we only embrace pieces of this cycle in most daily workflows. Edi-
torial review and approvals, or database administration and management, or citation
gathering or reference checking, or data cleaning, or ontology creation and manage-
ment, or ETL activities, or hundreds of other specific tasks, sit astride this general
backbone. Besides showing that interoperability is a systemic activity for any organi-
zation (or should be), we can also derive a couple of other insights from Figure 12-2.
First, we can see that some form of canonical representation and management is cen-
tral to interoperability. The form need not be a central storage system, but can be
distributed using Web identifiers (IRIs) and protocols (HTTP). Second, we character-
ize and tag our information objects using ontologies, both from structural and ad-
ministrative viewpoints, but also by domain and meaning. We can combine and ana-
lyze our information when we characterize it with a common semantics.

A third insight is that a global schema (from the standpoint of the enterprise) spe-
cific to workflows and our content is a key for linking and combining activities at any
point within the cycle. A common vocabulary for stages and interoperability tasks,
included as a best practice for our standard tagging efforts, provides the conventions
for how batons can get passed between activities at any stage in this cycle. The chal-
lenge of making this insight operational is one more of practice and governance than
of technology. It should be a purposeful activity in its own right, backed with appro-
priate management attention and incentives.

An enabling mindset for the knowledge workers involved is to pay explicit atten-
tion to content workflows and common vocabularies for those flows and the infor-
mation objects they govern. This focus becomes the scaffolding for an administrative
ontology and a basis for investigating tooling and automation in processing informa-
tion. We can already put in place chains of tooling and workflows to achieve a degree
of interoperability. We do not need to provide global answers or scope at the incep-
tion. We can start piecemeal, and expand as we benefit. The biggest gaps remain cod-
ification of workflows for the overall information lifecycle, and the application of
taggers to provide the workflow and structure metadata at each stage in the cycle.

247

A KNOWLEDGE REPRESENTATION PRACTIONARY

Again, these are not matters so much of technology or tooling, but willingness, and
policy and information governance.

PLATFORM CONSIDERATIONS

Semantic technologies have not yet reached the point of fulfilling their prophecy
nor of being sufficiently buzz-worthy to fuel their demand.1 Enterprise customers
are intrigued with the idea of semantic solutions but remain skeptical. Better search
is often the crucial leverage point in the sale. Enterprises do not seem interested in
linked data alone (if at all), though some like the idea of possibly contributing linked
data back to others. On the other hand, all enterprises competing in the current en-
vironment understand that knowledge, and their use and management of it, is per-
haps the pivotal factor in their relevance and survival.

I have had the good fortune to work with some cutting-edge, reference enterprise
deployments of semantic technologies. These efforts in enterprise-scale systems
have been eye-opening. We have opened one eye for how semantic technologies need
to integrate and adapt to existing enterprise practices and deployments. We have
opened the other eye to see how semantic technologies should be presented and sold
to internal enterprise stakeholders.

We have a working example in the Open Semantic Framework that shows the way
for how a few common representations and conventions can work to distribute both
schema and information (data) across a potentially distributed network. Further, by
not stopping at the water’s edge of data interoperability, we can also embrace fur-
ther, structural characterizations of our content. Adding this wrinkle enables us to
support a variety of venues for content consumption simultaneously and efficiently,
as well as to broaden our leverage of the knowledge asset through cheaper, more
streamlined machine learning and artificial intelligence. What I set out in the next
section are the multiple purposes and the ontology-driven aspects of a general
knowledge representation and management platform to support enterprise aims.

Supporting Multiple Purposes

Our avowed purposes in data interoperability and KBAI, supported by general KM
(knowledge management) uses, sets the overall application scope for our platform.
At the same time, we understand that particular uses of the platform will vary by do-
main, desired application emphases, and the actual instance data. We further assume
that initial demands and scope may warp and grow as we experience platform re-
sults, and external demands dictate. All of these considerations demand a platform
design that is open, modular, and extensible, capable of supporting multiple pur-
poses (and, thus, cost justifications). We need to put forward reasonable projected
benefits that greatly exceed development costs, and then to continue to justify such
assertions to sustain a healthy, dynamic knowledge management system. Specific do-

1 See Chapters 15 and 16.

248

http://opensemanticframework.org/

PLATFORMS AND KNOWLEDGE MANAGEMENT

main applications are surely the instrumental justification for an initial installation,
but an adaptive KM platform should also meet the two core requirements of search
and knowledge management.

Search

Enterprises, familiar with structured query language (SQL), have understood for
quite some time that queries and search are more than text searches to search
engines. Semantic technologies have their structured query approach, SPARQL.
State-of-the-art semantic search has found a way to combine these various underly-
ing retrieval engines with the descriptive power of the graph and semantic technolo-
gies to provide a universal search mechanism across all types of information stores.
The simplest way to understand semantic search is to de-construct the basic RDF
triple down to its fundamentals. This first observation is that the RDF data model can
represent anything, that is, an object or idea. Moreover, we can represent that object
in virtually any way that any viewer would care to describe it, in any language. In se-
mantic search, we may derive facets from not only what types of things exist in the
search space, but also what kinds of attributes or relations connect them. Gratify-
ingly, this all comes for free. Unlike conventional faceting, no one needs to decide
what are the important ‘dimensions’ or any such. With semantic search, the very ba-
sis of describing the domain at hand creates an organization of all things in the
space.

In semantic search, every property represents a different pathway, and every
node is an entry point. SPARQL enables us to pose queries, including with variables,
which can navigate and slice-and-dice the information space into usable results sub-
sets at will. We do not need to state all of the relationships and types of things in our
information space; we can infer them from the assertions already made. We can use
these broad understandings of our content to do better targeting, tagging, highlight-
ing or relating concepts to one another. The fact that semantic search is a foundation
for semantic publishing is noteworthy.

We first adopted Solr (and then Lucene) because traditional text search of RDF
triple stores was not sufficiently performant and made it difficult to retrieve logical
(user) labels in place of the IRIs used in semantic technologies. In our design, the
triple store is the data orchestrator. The RDF data model and its triple store are used
to populate the Solr schema index. The structural specifications (schema) in the
triple store guide the development of facets and dynamic fields within Solr. These
fields and facets in Solr give us the ability to gain Solr advantages such as aggregates,
autocompletion, filtering, spell checkers and the like. We also can capture the full
text if the item is a document, enabling us to combine standard text search with the
structural aspects orchestrated from the RDF. On the RDF side, we can also leverage
the schema of the underlying ontologies to do inferencing (via forward chaining). We
have been able to (more-or-less) seamlessly embrace geo-locational based search,
time-based search, the use of multiple search profiles, and switchable ranking and
scoring approaches based on context (using Solr’s powerful extended disMax edismax

249

http://wiki.apache.org/solr/ExtendedDisMax
http://en.wikipedia.org/wiki/Forward_chaining
https://en.wikipedia.org/wiki/Semantic_publishing
http://en.wikipedia.org/wiki/SPARQL
http://en.wikipedia.org/wiki/Search_engine
http://en.wikipedia.org/wiki/Search_engine

A KNOWLEDGE REPRESENTATION PRACTIONARY

parser).12 This combination gives us an optimal search platform to do full-text
search, aggregates, and filtering.

Knowledge Management

Our earlier Figure 12-1 showed the two bracketing left- and right-work areas in se-
mantic technologies. These are the very same knowledge graph (TBox) and instance
data (ABox) areas that form the knowledge base that our KM system must manage.
Here are some of the tasks we need to manage: 1) insert and update concepts in the
upper ontology; 2) update and manage attributes and track specific entities as new
sources of data are entered into the system; 3) establish coherent linkages and rela-
tions between things; 4) ensure these updates and changes are done wholly and con-
sistently, while satisfying the logic already in place; 5) update how we name and re-
fer to things as we encounter them; 6) understand and tag our content workflows
such that we can determine provenance and authority and track our content; and 7)
do these tasks using knowledge workers, who already have current tasks and activi-
ties.

These actions should be continuous, and established procedures with annotations
and logging should govern them. The entire premise of a knowledge management
system is to keep current and up-to-date. This need for currency means that use and
updates of the semantic technologies portion, which is the organizing basis for the
knowledge in the first place, must be part of daily routines and work tasking, subject
to management and incentives. Responsive, tailored tooling linked to current work-
flows is the technical requirement. Management procedures and training need to
complement the technology to ensure the human factors are also in place.

An Ontologies-based Design

We have seen that an upper ontology governs the overall knowledge graph, with
typologies and domain ontologies tailoring the scope and providing instance cover-
age. We have also seen, in the case of the content lifecycle, where we can capture
content workflows and approvals into metadata that tracks content across the sys-
tem and provides provenance information using an administrative ontology. The
platform should also provide a standard set of access and retrieval services including
browse, full-text search, CRUD, direct record retrievals, and the like. We may embed
these within an access and permissions service, also governed by an administrative
ontology, that acts at the level of registered datasets (see next section). We should
also design our queries and requests to the platform to include a parameter for get-
ting results sets in particular formats such as XML or JSON or RDF (various flavors),
or others of domain importance. Administrative ontologies can also guide how HTML
pages and forms are dynamically populated, often contextually, based on standard
SPARQL queries. For specific purposes, we can also return these results sets as pre-
staged, properly formatted results streams (usually in the form of SPARQL queries)
for driving particular applications. We only need to add a basic converter to the plat-

250

https://en.wikipedia.org/wiki/Create,_read,_update_and_delete

PLATFORMS AND KNOWLEDGE MANAGEMENT

form’s Web services stack to ‘drive’ a new application in a specific format.
As explained in the concluding section of this chapter, we recommend packaging

these platform capabilities as Web services that we can interact with and drive via
standard HTTP requests using standard application programming interfaces (APIs). Al-
ternatively, we can issue these requests from simple to comprehensive Web apps
that create the API queries based on user interface choices such as selections from
dropdown lists or clicking on various listed options. The platform thus acts as a sin-
gle, uniform Web interface to all of the capabilities of the structured data system or-
ganized by the adaptive ontologies. Further, we may ingest virtually any data struc-
ture and convert it via an import service made part of the underlying canonical
structure. Lastly, the dataset nature of the framework, and its neutrality to underly-
ing data stores or content management systems, also makes the platform an excel-
lent framework for one or many nodes to share information and collaborate across
the Web.

‘Ontology-driven apps’ through this platform design thus provide two profound
benefits. First, once we write the templates, we can drive the entire system via sim-
ple Web form selections or interactions without the need for any programming or
technical expertise. Second, we can power entirely new applications through the ad-
dition of new, minor output converters. These potentials arise from the native power
of the design basis for ontology-driven apps. Conceptually, the design is simplicity it-
self. Operationally, the system is extremely flexible and robust. Strategically, it
means our development and specification efforts may now move from coding and
programmers to the subject matter users who define ontologies and depend on them.

Enterprise Considerations

Security is an additional enterprise requirement that warrants particular atten-
tion. Whether profit or non-profit, all enterprises are unique, with potential propri-
etary information both internally and externally (with the public or possible com-
petitors). Though individual consumers also have requirements for privacy and con-
fidentiality, these information flows are strictly between the individual and outside
entities. In an enterprise, access may occur and be among many internal individuals
and all of their external contacts. Access control is the protection of resources against
unauthorized access. It is a process by which use of resources is regulated according
to a security policy and is permitted by only authorized system entities according to
that policy.13

We may provide access control, like many other enterprise considerations,
through a third-party application, by an administrative ontology linked to other fea-
tures tagged in the knowledge store, or both. As one example, we have provided ac-
cess control in some installations of the Open Semantic Framework using a three-di-
mensional matrix of datasets, users/groups, and CRUD rights to tools/endpoints. A
dataset refers to a named grouping of records, best designed as similar in record
types and intended access rights (though technically a dataset is any named group-
ing of records). We need to first grant access for given user/group to a particular

251

A KNOWLEDGE REPRESENTATION PRACTIONARY

Web service, and specify whether that user has CRUD (create – read– update – delete)
rights in whole or part to interact with specified datasets within the knowledge base.
It is in the nexus of user type, a tool (API), and dataset that we may establish access
control for the semantic system.

In an enterprise context, a given individual (user) may have different access
rights depending on circumstance. A worker in a department may be able to see and
do different things for departmental information than for enterprise information. A
manager may be able to view budget information that is not readable by support per-
sonnel. A visitor to a different Web site or portal may see different information than
visitors to other Web sites. Supervisors might be able to see and modify salary data
for individual employees that is not viewable by others. The user role or persona
thus becomes the access identifier to the system. As system managers, we define
what information and what tools users might use for the datasets for which they
have access.

The combination of datasets * tools * roles can lead to many access permutations.
With, say, 20 tools with five different roles and just ten different datasets, we already
have about 1,000 permutations. As portals and dataset numbers grow, this combina-
torial explosion gets even worse. Of course, not all combinations of datasets, tools,
and roles make sense. In fact, only a relatively few number of patterns covers 95% or
more of all likely access options. Because access rights are highly patterned, these
theoretical combinations can, in fact, be boiled down to a small number of practical
templates — which we call profiles — to which we may assign a newly registered
dataset or user. (Of course, the enterprise could also tweak any of the standard pro-
files to meet any of the combinatorial options for a specific, unusual individual, such
as for a tax auditor.)

Another enterprise consideration relates to training. Inter-team communications
must be grounded in shared vocabulary and concepts. Even then, it is still necessary
to continuously describe and explicate the benefits due to semantic approaches over
conventional ones. Because of its general foundational nature, semantic approaches
are often hidden or at the core of the information solution. It is not always self-evi-
dent what the advantages of semantic approaches are because their results can be
mimicked via conventional approaches (though at a higher cost with greater brittle-
ness). Semantic concepts are not (generally) intuitive to content editors, information
architects, project managers or fellow developers or project vendors. It is imperative
to engage in continuous training and knowledge transfer during a semantic deploy-
ment. Unlike just a few years back, we no longer see resistance to open source solu-
tions. In fact, for early semantic adopters, open source is a positive feature. However,
open source in a complicated enterprise environment comes with challenges. Sup-
port is often weak and integrating the pieces becomes one of the project responsibili-
ties and risks. Open APIs and Web service endpoints still can lead to integration chal-
lenges. Encoding mismatches or how error messages get generated or treated, as two
examples, point to some of the challenges in creating an integrated enterprise envi-
ronment from multiple open source pieces.

Enterprise funding is still another concern. Enterprise IT budgets have come un-

252

PLATFORMS AND KNOWLEDGE MANAGEMENT

der pressure. The justification for many projects resides in being able to offset an-
nual licensing and maintenance fees, which can impose delivery constraints based on
renewal dates. Existing enterprise IT budgets have also been made more incremental,
with milestone achievements often required for moving forward. These trends are
putting a premium on agile development and the need for enterprise-scale deploy-
ment and testing tools. Repeatable build processes and scripts are an essential com-
ponent now for complex stack deployments.

Many of the issues that emerge in enterprise deployments are ancillary to or in-
dependent of specific knowledge components. Logging, testing, security, access, ser-
vice buses and deployment builds are an umbrella over entire deployments. In these
regards, too, we must adhere to enterprise build practices and standards. The fre-
quency of repeating builds and testing means we need to create scripts for these
steps and improve deployment documentation and practices. In these regards,
knowledge and semantic technologies are no different from other components in the
broader, enterprise-wide stack.

Another reality of semantic technologies in the enterprise is that few champions
and advocates exist within many organizations. We must find means to communicate
to semantic newbies and to enlist the aid of champions in carrying the message for-
ward within the organization. In multi-vendor deployments, we should seek single
points of contact able to communicate with their colleagues. In turn, the consumers
of knowledge applications – namely subject matter experts, employees, partners, and
stakeholders – now become the active contributors to the graphs themselves, focus-
ing on reconciling terminology and ensuring adequate entity and concept coverage.
Graph-driven applications mean that those closest to the knowledge problems will
also be those directly augmenting the graphs. These changes act to democratize the
knowledge function and lower overall IT costs and risks.

A WEB-ORIENTED ARCHITECTURE

Web-oriented architecture, or WOA, is a subset of the service-oriented architectural
(SOA) style, wherein we package discrete functions into modular and shareable ele-
ments (‘services’) that we make available in a distributed and loosely coupled man-
ner. WOA uses the representational state transfer (REST) style, geared to the HTTP
hypertext transfer model. Roy Fielding defined the REST architectural style in his
2000 doctoral thesis.14 Fielding is also one of the principal authors of the Hypertext
Transfer Protocol (HTTP) specification. We couch WOA guidelines within the frame-
work of a generalized architectural style, and while not limited to the Web, are a foun-
dation for it.

Nick Gall, a Gartner analyst, was one of the first to coin the WOA moniker. Gall de-
scribes WOA as based on the architecture of the Web as aq “globally linked, decen-
tralized, and [with] uniform intermediary processing of application state via self-de-
scribing messages.” REST provides principles for how resources are defined and used
and addressed with simple interfaces without additional messaging layers such as
SOAP or RPC. REST and WOA stand in contrast to earlier Web service styles known by

253

http://en.wikipedia.org/wiki/Roy_Fielding
http://en.wikipedia.org/wiki/Remote_procedure_call
http://en.wikipedia.org/wiki/SOAP
http://blogs.gartner.com/nick_gall
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Representational_state_transfer
http://en.wikipedia.org/wiki/Service-oriented_architecture
http://en.wikipedia.org/wiki/Agile_software_development

A KNOWLEDGE REPRESENTATION PRACTIONARY

the WS-* acronym (such as WSDL). WOA has proven highly scalable and robust for
decentralized users since all messages and interactions are self-contained (convey
‘state’). It is not surprising that the largest existing knowledge networks on the globe
— such as Google, Wikipedia, Amazon, and Facebook — are Web-based. These pio-
neers have demonstrated the wisdom of WOA for cost-effective scalability and uni-
versal access.

We recommend a WOA architecture for knowledge management and representa-
tion purposes. Like the Internet itself, WOA has the advantage of being scalable and
distributed, all (mostly) based on open standards. RESTful application programming
interfaces (APIs) extend interoperability to outside systems and provide flexibility
for swapping in new features or functionality as new components or developments
arise. Under this design, all components and engines (‘services’) become in effect
‘black boxes,’ with information exchange via standard vocabularies and formats us-
ing APIs as the interface for interoperability.

Web-orientation and Standards

Two main reasons, plus a host of others, justify basing our KM architecture on the
Web. The first main reason is a crowning achievement of the semant i c Web , which is
the simple use of uniform resource identifiers (URIs, now internationalized to IRIs) to
identify data. Further, if the resource identifier can resolve to a representation of
that data, it now becomes an integral part of the HTTP access protocol of the Web
while providing a unique identifier for the data. The HTTP protocol is the second
main reason, through which we gain access to a global, distributed network. These
innovations provide the basis for distributed data at global scale, all accessible via
Web devices such as browsers and smartphones that are now a ubiquitous part of our
daily lives. The combination of RDF with Web identifiers also means that we may ex-
pose any information from a given knowledge repository and make it available to
others as linked data. This approach makes the Web a universal database.

We often think of HTTP as a communications protocol, but it is much more.15 It
represents the operating system of the Web as well as the embodiment of a design
philosophy and architecture. Within its specification lies the secret of the Web’s suc-
cess. REST and WOA quite possibly require nothing more to understand than the
HTTP specification. HTTP provides the distinctions of GET and POST and persistent
IRIs and the need to maintain stateless sessions with an idempotent design. HTTP
also provides for content and serialization negotiation, and error and status mes-
sages for HTTP requests. HTTP also includes: language, character set, encoding, seri-
alization and mime type enforced by header information and conformance with con-
tent negotiation; common and consistent terminology to aid understanding of the
universal interface; a resulting component and design philosophy that is inherently
scalable and interoperable; and a seamless consistency between data and services.
CRUD is readily applicable to HTTP.

Besides these reasons, WOA is consistent with the many open Web standards we
use in KBpedia and our platform designs. See further Chapter 9.

254

http://en.wikipedia.org/wiki/Idempotent
http://en.wikipedia.org/wiki/Hypertext_Transfer_Protocol
https://en.wikipedia.org/wiki/Internationalized_Resource_Identifier
http://en.wikipedia.org/wiki/Uniform_resource_identifier
http://en.wikipedia.org/wiki/Semantic_Web
http://en.wikipedia.org/wiki/Semantic_Web
http://en.wikipedia.org/wiki/Semantic_Web
http://en.wikipedia.org/wiki/Web_Services_Description_Language

PLATFORMS AND KNOWLEDGE MANAGEMENT

A Modular Web Services Design

I have emphasized two themes throughout this chapter. The first theme is to
scope and bound functionality related to design needs. The second theme is to inte-
grate these functions within current content workflows. We express these themes
using individual RESTful Web services in our design, as exposed and accessed
through their application programming interfaces (APIs). We have already seen how the
WOA approach enables us to use the HTTP protocol for accessing RESTful Web ser-
vices. The specific scoping and design of the functional modules provide the comple-
mentary part of the overall design. Since the resulting APIs are independent of any
particular operating environment, we can reduce implementation costs for multi-
platform user agents and promote the development of multi-platform services.

We determine the modularity of the services through analysis of the work tasks
(see Figure 12-1). Where appropriate, we embed these modules into other current ap-
plications or workflows (Figure 12-2). Enterprise considerations such as security, ac-
cess control, or workflow management enter in at this point to help complete the
roster of desired services. These definitions help provide the boundary responsibili-
ties of each Web service and what types of API instructions they may need. Platform-
wide requirements, such as access control, must inform some of these needs.

We tend to follow a few guidelines in designing our Web services. We emphasize
1) use of a canonical, internal data representation format; 2) unit testing for all ser-
vices; 2) attentiveness to error numbering and conformity of error messages, some of
which we discover during testing; 3) similar granularity and order for specifying pa-
rameters across the APIs; 4) provision of online demo examples; 5) standard import
and export formats; and 6) dual access to the API via SPARQL and programmatically.
We tend to use a ‘triples’ or N3 RDF format for our internal canonical representation,
which has a standard specification. (We also allow multiple import or export formats
beyond the internal canonical form.) The provision for dual access to the APIs gives
us the standard query basis of SPARQL, plus faster programmatic calls when using in-
ternal network transfers.

The size of payloads in both query results and as results set objects can be a chal-
lenge for RESTful Web services. Long HTTP queries with many parameter requests
and large results sets can be a problem to handle, especially in the security layer. In
some cases, we may need to look at ways to minimize and package (consolidate) pa-
rameter options to make endpoint requests more efficient. Encoding mismatches are
a further challenge. It is best, for example, to adhere to a standard UTF-8 encoding
via all semantic component interfaces. Consistent encoding requires attention and
coordination on both sides of the interface and in tool use, especially the use of
spreadsheets or CSV files.

The more fundamental challenge, however, is one of mindset. Effective interfaces
require effective communications of the participating vendors across the boundary.
The terminology, concepts, logic and open-world approach to knowledge manage-
ment and semantic technologies are not easily communicated nor immediately un-
derstood by traditional vendors. We must continuously work on communications to

255

https://en.wikipedia.org/wiki/UTF-8

A KNOWLEDGE REPRESENTATION PRACTIONARY

overcome past practices and embrace the flexibilities provided by semantic tech-
nologies.

REST Web services16 and linked data are naturally compatible approaches. Linked
data is a set of best practices for publishing and deploying data on the Web using the
RDF data model. The data objects are named using Web uniform resource identifiers
(IRIs), emphasize data interconnections, and adhere to REST principles. We also see
the ideas of RESTful Web services morph into ones with more limited and targeted
functionality. These microservices have a broad swath of definitions. Some of the
narrower ones, including in their ideas of choreographing and aggregating multiple
small services, bear a close resemblance to the particular flavor of Web services that
we recommend.

An Interoperability Architecture

Figure 12-3 presents our generic architecture for this WOA design. The three tiers
of the system are content acquisition, the repository, and content consumption:

256

Figure 12-3: An Interoperability Architecture

https://en.wikipedia.org/wiki/Microservices
https://en.wikipedia.org/wiki/Linked_data
mike
Stamp

PLATFORMS AND KNOWLEDGE MANAGEMENT

We have tended to abstract our WOA services into simple and compound ones
(which are combinations of the simple). All Web services have uniform interfaces and
conventions and share the error codes and standard functions of HTTP. We further
extend the WOA definition and scope to include linked data, which is also RESTful.
Thus, our WOA also sits atop an RDF (Resource Description Framework) database
(‘triple store’) and full-text search engine.

The content acquisition tier is where all information comes into the system. For
new sources, this involves mapping the concepts and other conformities to the exist-
ing knowledge graph. Already mapped sources and concepts require fewer integrity
checks when we add instances or updates. Because we are using semantic technolo-
gies, we are agnostic as to the content source and can handle most any content. The
content ingestion step is where we employ the limited number of canonical forms
and use RDF as our data transfer model (see Chapter 9).

The repository tier is where the knowledge graph, knowledge base, triple store,
OWL API, and full-text search engine reside. Most all knowledge management (KM)
functions reside in this tier. All ontologies and their management reside at this tier.
The full-text search engine and triple stores are mostly agnostic third-party systems.
While some differences in open source search engines and triple stores exist, we may
plug most into the design. We have used Jena and Virtuoso as triple stores in the
past, as well as the Lucene and Solr search engines. Many other options exist.

Many of the specialized work functions shown in the middle sections of Table 12-1
and Figure 12-1 reside in the bottom (as shown in Figure 12-3) content consumption
tier. Within this tier, we may move some content to an archive data store, or we may
transform subsets for machine learning purposes or to re-purpose existing content.
Some of the transformations at this tier are merely transfer conventions with an ex-
ternal application. In addition to such tailored forms and their dedicated Web ser-
vices, we also make available the general output in a variety of standard formats.
Note that the content re-use and mapping layers, as well as the repository, use the
internal canonical data representation.

Chapter Notes
1. Some material in this chapter was drawn from the author’s prior articles at the AI3:::Adaptive Information

blog: “‘ and Now You Know the REST of the Story . . .’” (Feb 2007); “WOA: A New Enterprise Partner for
Linked Data" (Oct 2008); “WOA! So RESTful it is UMBELievable!" (Oct 2008); “A General Web-oriented Archi-
tecture (WOA) for Structured Data" (May 2009); “The Fundamental Importance of Keeping an ABox and
TBox Split" (May 2009); “Ontology-driven Applications Using Adaptive Ontologies" (Nov 2009); “The Open
World Assumption: Elephant in the Room" (Dec 2009); “I Have Yet to Metadata I Didn’t Like" (Aug 2010); “An
Ontologies Architecture for Ontology-driven Apps" (Dec 2011); “Architecting Semantic Technologies for the
Enterprise" (Jan 2013); “Enterprise-scale Semantic Systems" (Jan 2013); “Semantic Technology Access Con-
trol Using Datasets" (Feb 2013); “Five Fundamental Distinctions of Enterprise Software" (Jan 2014); “Logical
Implications of Interoperability" (Jun 2015); “Creating a Platform for Knowledge-based Machine Intelli-
gence" (Sep 2015); “A Foundational Mindset: Firstness, Secondness, Thirdness" (Mar 2016); “Why I Study CS
Peirce" (Aug 2017).

2. Sweet Tools is still online with its searchable tool listing at http://www.mkbergman.com/sweet-tools/ (for
statistics on the latest release, see http://www.mkbergman.com/991/the-state-of-tooling-for-semantic-

257

A KNOWLEDGE REPRESENTATION PRACTIONARY

technologies/). However, it has not been updated since the beginning of 2012 and is substantially out of
date. There is no alternative survey to my knowledge.

3. Prior tools that we have released under various open source licenses include BibJSON, Citizen Dan, con-
Struct, irON, Open Semantic Framework, OSF for Drupal, scones information tagger, structWSF, and struc-
tXML. Ontologies and vocabularies that we have released under various open use licenses include BIBO (Bib-
liographic Ontology), the MUNI Ontology, the Music Ontology, and UMBEL.

4. Berners-Lee, T., Lassila, O., and Hendler, J., “The Semantic Web,” Scientific American Magazine, 2001.

5. Noy, N. F., Sintek, M., Decker, S., Crubézy, M., Fergerson, R. W., and Musen, M. A., “Creating Semantic Web
Contents with Protege-2000,” IEEE Intelligent Systems, vol. 16, 2001, pp. 60–71.

6. Sure, Y., Erdmann, M., Angele, J., Staab, S., Studer, R., and Wenke, D., “OntoEdit: Collaborative Ontology De-
velopment for the Semantic Web,” The Semantic Web—ISWC 2002, 2002, pp. 221–235.

7. Bechhofer, S., Horrocks, I., Goble, C., and Stevens, R., “OilEd: a Reasonable Ontology Editor for the Semantic
Web,” Working Notes of the 2001 International Description Logics Workshop (DL-2001), pp. 1–9.

8. Bechhofer, S., Volz, R., and Lord, P., “Cooking the Semantic Web with the OWL API,” International Semantic
Web Conference, Springer, 2003, pp. 659–675.

9. Horridge, M., and Bechhofer, S., “The OWL API: A Java API for OWL Ontologies,” Semantic Web, vol. 2, 2011,
pp. 11–21.

10. Jena is fundamentally an RDF API. Jena’s ontology support is limited to ontology formalisms built on top of
RDF. Specifically this means RDFS, the varieties of OWL, and the now-obsolete DAML+OIL.See http://jena.a-
pache.org/.

11. Bergman, M. K., “Large-scale RDF Graph Visualization Tools,” AI3:::Adaptive Information, Jan. 2008.

12. Similar capabilities may be implemented with Lucene or ElasticSearch.

13. See further RFC 2828,"Internet Security Glossary," May 2000, The Internet Society, provided by the Internet
Engineering Task Force (IETF) (see http://www.ietf.org/rfc/rfc2828.txt).

14. Fielding, R. T., “Architectural Styles and the Design of Network-Based Software Architectures,” Ph.D., Uni-
versity of California, Irvine, 2000.

15. The current specification is RFC 2616 (June 1999), which defines HTTP/1.1; see http://tools.ietf.org/html/
rfc2616. For those wanting an easier printed copy, a good source in PDF is http://www.faqs.org/ftp/rfc/
rfc2616.pdf.

16. Richardson, L., and Ruby, S., RESTful Web Services, Sebastopol, CA: O’Reilly Media, Inc., 2008.

258

	Structure of the Book 2
	Overview of Contents 3
	Key Themes 9
	What is Information? 15
	What is Knowledge? 25
	What is Representation? 32
	Information and Economic Wealth 45
	Untapped Information Assets 53
	Impediments to Information Sharing 60
	KM and A Spectrum of Applications 66
	Data Interoperability 68
	Knowledge-based Artificial Intelligence 74
	Equal Class Data Citizens 86
	Addressing Semantic Heterogeneity 90
	Carving Nature at the Joints 96
	A Foundational Mindset 107
	Firstness, Secondness, Thirdness 111
	The Lens of the Universal Categories 116
	Things of the World 129
	Hierarchies in Knowledge Representation 132
	A Three-Relations Model 140
	Logical Considerations 149
	Pragmatic Model and Language Choices 159
	The KBpedia Vocabulary 162
	The Context of Openness 176
	Information Management Concepts 184
	Taming a Bestiary of Data Structs 191
	Types as Organizing Constructs 197
	A Flexible Typology Design 204
	KBpedia’s Typologies 207
	Graphs and Connectivity 216
	Upper, Domain and Administrative Ontologies 224
	KBpedia’s Knowledge Bases 229
	Uses and Work Splits 238
	Platform Considerations 248
	A Web-oriented Architecture 253
	Tailoring for Domain Uses 260
	Mapping Schema and Knowledge Bases 265
	‘Pay as You Benefit’ 275
	A Primer on Knowledge Statistics 279
	Builds and Testing 287
	Some Best Practices 292
	Near-term Potentials 304
	Logic and Representation 310
	Potential Methods and Applications 315
	Workflows and BPM 325
	Semantic Parsing 331
	Cognitive Robotics and Agents 343
	The Sign and Information Theoretics 352
	Peirce: The Philosopher of KR 353
	Reasons to Question Premises 356
	Peirce, The Person 364
	Peirce, The Philosopher 367
	Peirce, The Polymath 375
	An Obsession with Terminology 379
	Peirce, The Polestar 381
	Resources About Peirce 382
	Components 390
	Structure 393
	Capabilities and Uses 398
	Preface
	Introduction
	Structure of the Book
	Overview of Contents
	Key Themes

	Information, Knowledge, Representation
	What is Information?
	Some Basics of Information
	The Structure of Information
	Forms of Structure
	Some Structures are More Efficient
	Evolution Favors Efficient Structures
	The Meaning of Information

	What is Knowledge?
	The Nature of Knowledge
	Knowledge as Belief
	Doubt as the Impetus of Knowledge

	What is Representation?
	The Shadowy Object
	Three Modes of Representation
	Peirce’s Semiosis and Triadomany
	Knowledge Representation in Context

	The Situation
	Information and Economic Wealth
	The X Factor of Information
	Knowledge and Innovation

	Untapped Information Assets
	Valuing Information as an Asset
	Lost Value in Information
	The Information Enterprise

	Impediments to Information Sharing
	Cultural Factors
	Tooling and Technology
	Perspectives and Priorities

	The Opportunity
	KM and A Spectrum of Applications
	Some Premises
	Potential Applications
	A Minimal Scaffolding

	Data Interoperability
	The Data Federation Pyramid
	Benefits from Interoperability
	A Design for Interoperating

	Knowledge-based Artificial Intelligence
	Machine Learning
	Knowledge Supervision
	Feature Engineering

	The Precepts
	Equal Class Data Citizens
	The Structural View
	The Formats View
	The Content View

	Addressing Semantic Heterogeneity
	Sources of Semantic Heterogeneity
	Role of Semantic Technologies
	Semantics and Graph Structures

	Carving Nature at the Joints
	Forming ‘Natural’ Classes
	A Mindset for Categorization
	Connections Create Graphs
	A Grammar for Knowledge Representation

	The Universal Categories
	A Foundational Mindset
	A Common Grounding in Peirce
	Truth is Testable and Fallible
	Upper Ontologies, Context, and Perspective
	Being Attuned to Nature

	Firstness, Secondness, Thirdness
	Constant Themes of Three
	Summary of the Universal Categories
	The Irreducible Triad

	The Lens of the Universal Categories
	An Aha! Moment
	Grokking the Universal Categories
	Applying the Universal Categories
	The Categories and Categorization

	A KR Terminology
	Things of the World
	Entities, Attributes, and Concepts
	What is an Event?

	Hierarchies in Knowledge Representation
	Types of Hierarchical Relationships
	Structures Arising from Hierarchies

	A Three-Relations Model
	Attributes, the Firstness of Relations
	External Relations, the Secondness of Relations
	Representations, the Thirdness of Relations
	The Basic Statement

	KR Vocabulary and Languages
	Logical Considerations
	First-order Logic and Inferencing
	Deductive Logic
	Inductive Logic
	Abductive Logic
	Redux: The Nature of Knowledge
	Particulars, Generals, and Description Logics

	Pragmatic Model and Language Choices
	RDF: A Universal Solvent
	OWL 2: The Knowledge Graph Language
	W3C: Source for Other Standards

	The KBpedia Vocabulary
	Structured on the Universal Categories
	Three Main Hierarchies
	The Instances Vocabulary
	The Relations Vocabulary
	Attributes Relations (1ns)
	External Relations (2ns)
	Representation Relations (3ns)

	The Generals (KR Domain) Vocabulary
	Other Vocabulary Considerations
	Components of Knowledge Representation

	Keeping the Design Open
	The Context of Openness
	An Era of Openness
	The Open World Assumption
	Open Standards

	Information Management Concepts
	Things, Not Strings
	The Idea and Role of Reference Concepts
	Punning for Instances and Classes

	Taming a Bestiary of Data Structs
	Rationale for a Canonical Model
	The RDF Canonical Data Model
	Other Benefits from a Canonical Model

	Modular, Expandable Typologies
	Types as Organizing Constructs
	The Type-Token Distinction
	Types and Natural Classes
	Very Fine-Grained Entity Types

	A Flexible Typology Design
	Construction of the Hierarchical Typologies
	Typologies are Modular
	Typologies are Expandable

	KBpedia’s Typologies
	Full Listing of Typologies
	‘Core’ Typologies
	Tailoring Your Own Typologies

	Knowledge Graphs and Bases
	Graphs and Connectivity
	Graph Theory
	The Value of Connecting Information
	Graphs as Knowledge Representations

	Upper, Domain and Administrative Ontologies
	A Lay Introduction to Ontologies
	Ontologies are A Family of Graphs
	Incipient Potentials
	Good Ontology Design and Construction

	KBpedia’s Knowledge Bases
	KBpedia KBs
	Primary KBs
	Secondary KBs
	Candidate KBs for Expansion
	Building KR Systems

	Platforms and Knowledge Management
	Uses and Work Splits
	The State of Tooling
	TBox, ABox, and Work Splits
	Content Workflows

	Platform Considerations
	Supporting Multiple Purposes
	Search
	Knowledge Management
	An Ontologies-based Design
	Enterprise Considerations

	A Web-oriented Architecture
	Web-orientation and Standards
	A Modular Web Services Design
	An Interoperability Architecture

	Building Out The System
	Tailoring for Domain Uses
	A Ten-point Checklist for Domain Use
	An Inventory of Assets
	Phased Implementation Tasks and Plan
	Domain Knowledge Graph
	Instance Data Population
	Analysis and Content Processing
	Use and Maintenance
	Testing and Mapping
	Documentation

	Mapping Schema and Knowledge Bases
	Mapping Methods and Tools
	Building Out the Schema
	Overview of Approaches
	Some Design Guidelines
	1. Be Lightweight and Modular
	2. Use Reference Structures
	3. Re-use Existing Structure
	4. Build Incrementally
	5. Use Simple Predicates
	6. Test for Logic and Consistency
	7. Map to External Ontologies

	Building Out the Instances (Knowledge Bases)
	1. Update Changing Knowledge
	2. Process the Input KBs
	3. Install, Run and Update the System
	4. Test and Vet Placements
	5. Test and Vet Mappings
	6. Test and Vet Assertions
	7. Ensure Completeness
	8. Test and Vet Coherence
	9. Generate Training Sets
	10. Test and Vet Learners
	Rinse and Repeat

	‘Pay as You Benefit’
	Placing the First Stake
	Incremental Build Outs Follow Benefits
	Learn to Quantify and Document Benefits

	Testing and Best Practices
	A Primer on Knowledge Statistics
	Two Essential Metrics, Four Possible Values
	Many Useful Statistics
	Working Toward ‘Gold Standards’

	Builds and Testing
	Build Scripts
	Testing Scripts
	Literate Programming

	Some Best Practices
	Data and Dataset Practices
	Dataset Best Practices
	Linked Data
	Knowledge Structures and Management Practices
	Organizational and Collaborative Best Practices
	Naming and Vocabulary Best Practices
	Best Ontology Practices
	Testing, Analysis and Documentation Practices
	Testing Best Practices
	Analytical Best Practices
	Documentation Best Practices
	Practical Potentials and Outcomes

	Potential Uses in Breadth
	Near-term Potentials
	Word Sense Disambiguation
	Relation Extraction
	Reciprocal Mapping
	Extreme Knowledge Supervision

	Logic and Representation
	Automatic Hypothesis Generation
	Encapsulating KBpedia for Deep Learning
	Measuring Classifier Performance
	Thermodynamics of Representation

	Potential Methods and Applications
	Self-Service Business Intelligence
	Semantic Learning
	Nature As An Information Processor
	Gaia Hypothesis Test

	Potential Uses in Depth
	Workflows and BPM
	Concepts and Definitions
	The BPM Process
	Optimal Approaches and Outcomes

	Semantic Parsing
	A Taxonomy of Grammars
	Computational Semantics
	Three Possible Contributions Based on Peirce
	#1 - Peircean POS Tagging
	#2 - Machine Learning Understanding Based on Peirce
	#3 - Peirce Grammar

	Cognitive Robotics and Agents
	Lights, Camera, Action!
	Grounding Robots in Reality
	Robot as Pragmatist

	Conclusion
	The Sign and Information Theoretics
	Peirce: The Philosopher of KR
	Knowledge and Peirce
	Time to Move from Theory to Practice

	Reasons to Question Premises
	AI is a Field of KR
	Hurdles to be Overcome
	Of Crystals and Robots

	Appendix A:
	Perspectives on Peirce
	Peirce, The Person
	Peirce, The Philosopher
	Peirce’s Architectonic
	Chance, Existents, and Continuity: Real
	Chance
	Existents
	Continuity
	What is Real
	Leaning Into Pragmatism

	Peirce, The Polymath
	Mathematics
	Cenoscopy
	Idioscopy
	Scientist
	Inventor
	Humanist, as Person

	An Obsession with Terminology
	Peirce, The Polestar
	Resources About Peirce

	Appendix B:
	The KBpedia Resource
	Components
	The KBpedia Knowledge Ontology (KKO)
	The KBpedia Knowledge Bases
	The KBpedia Typologies

	Structure
	Capabilities and Uses

	Appendix C:
	KBpedia Feature Possibilities
	What is a Feature?
	A (Partial) Inventory of Natural Language and KB Features
	Feature Engineering for Practical Limits
	Considerations for a Feature Science
	Role of a Platform

	Glossary
	A
	B
	C
	D
	E
	F
	G
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y

	Index

