
Available Article

Author’s final:  This draft is prior to submission for publication, and the 
subsequent edits in the published version. If quoting or citing, please refer to the 
proper citation of the published version below to check accuracy and pagination.

Cite as:  Bergman, M. K. Knowledge Graphs and Bases. in A Knowledge 
Representation Practionary: Guidelines Based on Charles Sanders Peirce (ed. 
Bergman, M. K.) 227–247 (Springer International Publishing, 2018). 
doi:10.1007/978-3-319-98092-8_11

Official site:  https://link.springer.com/book/10.1007/978-3-319-98092-8

Full-text:  http://www.mkbergman.com/publications/akrp/chapter-11.pdf

Abstract:  Relations between nodes, different than those of a hierarchical or 
subsumptive nature, provide still different structural connections across the 
knowledge graph. Besides graph theory, the field draws on methods including 
statistical mechanics from physics, data mining and information visualization from 
computer science, inferential modeling from statistics, and social structure from 
sociology. We want knowledge sources, putatively knowledge bases, to contribute 
the actual instance data to populate our ontology graph structures.

https://link.springer.com/book/10.1007/978-3-319-98092-8
http://www.mkbergman.com/publications/akrp/chapter-11.pdf


11

KNOWLEDGE GRAPHS AND BASES

irtually everywhere one looks we are in the midst of a transition for how we
organize and manage information, indeed even relationships. Social networks

and online communities are changing how we live and interact. NoSQL and graph
databases — married to their near cousin ‘big data’ — are changing how we organize
and store information and data. Semantic technologies, backed by their ontologies
and RDF data model, are showing the way for how we can connect and interoperate
disparate information in ways only dreamed about a decade ago. Moreover, we are
building all of this upon the infrastructure of the Internet and the Web, a global, dis-
tributed network of devices and information that is undoubtedly one of the most sig-
nificant technological developments in human history.

V

The graph is a shared structure across all of these developments.1 Graphs are the
new universal paradigm for how we organize and manage information. Graphs have
an inherently expandable nature and one which can also capture any existing struc-
ture. So, as we see all of the networks, connections, relationships, and links — both
physical and informational — grow around us, it is useful to step back a bit and con-
template the universal graph structure at the core of these developments. Some form
of conceptual schema governs every knowledge structure used for knowledge repre-
sentation (KR) or knowledge-based artificial intelligence (KBAI). In the semantic Web
space, we call such schema ‘ontologies.’ Because the word ontology is a bit intimidat-
ing, a better variant is the knowledge graph (because all semantic ontologies take the
structural form of a graph). In our knowledge representation efforts, we tend to use
the terms ontology and knowledge graph interchangeably.

What an ontology — or knowledge graph — means is dependent on context and
purpose. In the case of an upper ontology and typologies, we see the conceptual scaf-
folding. In the relation of attributes to instances, we see the intensional aspects of the
graph and the basis for data records. Relations between nodes, different than those
of a hierarchical  or subsumptive nature,  provide still  different structural  connec-
tions across the knowledge graph. Indeed, one can and should organize the types of
types in a knowledge graph to better modularize it and segregate similar purposes
and functions. We design some ontologies to capture the scope of particular knowl-
edge domains, while others we may use for administrative purposes or in support of
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user interfaces. We discuss all of these aspects in this chapter, plus what is desirable
in knowledge bases and how to use them to populate these knowledge structures.

GRAPHS AND CONNECTIVITY

Graphs, as conceptual or analytical structures, are relatively new. The explication
of graph theory only began about 300 years ago. The use of graphs for expressing
logic structures only began about 100 years ago, with its intellectual roots, in fact,
arising from Charles Peirce and his  existential graphs. Though likely trade routes
and primitive transportation or nomadic infrastructures were perhaps the first ex-
pressions of physical networks, the emergence and then prevalence of networks is
also a fairly recent phenomenon. Transportation, communications, and the electrical
grid were the first purpose-built physical networks. The Internet and the Web are
surely the catalyzing development that has brought graphs and networks to the fore-
front.

In mathematics, a graph is an abstract representation of a set of objects where
pairs of the objects are connected. We term these objects nodes or vertices; we call the
connections between the objects edges. Typically, we depict a graph in diagrammatic
form as a set of dots or bubbles for the nodes, joined by lines or curves for the edges.
If  we  define  a  logical  relationship  between  connected  nodes  we  call  the  graph
‘directed.’ We can express various structures or topologies through this conceptual
graph framework. Graphs are one of the focuses of study in discrete mathematics.2

The word ‘graph’ was first used in a mathematical sense by J.J. Sylvester in 1878.3

Graphs are modular and can be both readily combined and broken apart. From a
computational standpoint, this can lend itself to parallelized information processing
(and, therefore, scalability). If we represent the graph in RDF, graph extractions are
themselves valid models. Graphs have some unique strengths for search and pattern
matching. Besides options like finding paths between two nodes, depth-first search,
breadth-first search, or finding shortest paths, emerging graph and pattern-match-
ing approaches may offer entirely new paradigms for search. Graphs also provide
new methods for visualization and navigation, useful for both seeing relationships
and framing information from the local to global contexts. The interconnectedness
of the graph allows us to explore data via contextual facets, which is revolutionizing
data understanding in a way similar to how the basic hyperlink between documents
on the Web changed the contours of our information spaces.

Graph algorithms are a significant field of interest within mathematics, computer
science, and the social sciences. Via approaches such as network theory or scale-free
networks, we can analyze and model topics such as relatedness, centrality, impor-
tance, influence, ‘hubs’ and ‘domains,’ link analysis, spread, diffusion and other dy-
namics. Many would argue, as do I, that graphs are the most ‘natural’ data structure
for capturing the relationships of the real world. If so, we should continue to see new
algorithms and approaches emerge based on graphs to help us better understand our
information. RDF is a natural data model for such purposes.
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Graph Theory

Graph theory is the manipulation and analysis of graph structures. The first paper
in that field is the Seven Bridges of Königsberg, written by Leonhard Euler in 1736. The
objective of the article was to find a walking path through the city that would cross
each bridge once and only once. Euler proved that the problem had no solution.1

Later, Cayley broadened the approach to study tree structures, which have many im-
plications in theoretical chemistry. By the 20th century, the fusion of ideas coming
from mathematics with those coming from chemistry formed the origin of much of
the standard terminology of graph theory.

Graph theory forms the core of network science, the applied study of graph struc-
tures  and networks.  Besides  graph theory,  the field  draws  on methods  including
statistical mechanics from physics,  data mining and information visualization from
computer science, inferential modeling from statistics, and social structure from so-
ciology. Classical problems embraced by this realm include the four color problem of
maps, the  traveling salesman problem, and the  six degrees of Kevin Bacon. Graph
theory and network science are the suitable disciplines for a variety of information
structures  and many additional  classes  of  problems.  Graphs are  among the most
ubiquitous models of both natural and human-made structures. They can be used to
model many types of relations and process dynamics in physical, biological and so-
cial systems. Graphs can represent many problems of practical interest. This breadth
of applicability makes network science and graph theory two of the most critical an-
alytical areas for study and breakthroughs for the foreseeable future.

Graphs and graph theory also have broad applicability to natural systems. For in-
stance, researchers use graph theory extensively to study molecular structures in
chemistry and physics. A graph makes a natural model for a molecule, where vertices
represent atoms and edges bonds. Similarly, in biology or ecology, researchers em-
ploy graphs to express such systems as species networks, ecological relationships,
migration paths,  or the spread of  diseases.  Graphs are  also proper structures for
modeling biological and chemical pathways. Some of the exemplary natural systems
that lend themselves to graph structures include:

 Chemical reaction networks   
 Gene regulatory networks   
 Spin networks   
 Neural networks   
 Ecological networks  , and 
 Petri nets   (chemistry). 

The growth of social networks has paralleled the growth of the Internet and Web.
Social network analysis (SNA) has arguably been the most critical driver for advances
in graph theory and analysis algorithms in recent years. We are now elucidating new

1 The generalized understanding is that in any connected graph, only zero or two nodes may have odd num-
bers of connections to traverse the entire graph only once per path (edge); the Königsberg example has 
four nodes with odd numbers, and thus fails Euler’s test.
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and interesting problems and challenges — from influence to communities to con-
flicts — through techniques pioneered for SNA. The suitability of the graph structure
to capture relationships has been a real boon to a better understanding of social and
community dynamics. SNA has introduced many new concepts, including such things
as influence, diversity, centrality, and cliques. Particular areas of social interaction
that lend themselves to SNA include:

 Social networks   
 Military conflicts   and terrorism 
 Value networks   
 Project networks   
 Workflows  , and 
 Business ecosystems  . 

We have unearthed entirely new insights using SNA including finding terrorist lead-
ers,  analyzing  prestige,  or  identifying  keystone  vendors  or  suppliers  in  business
ecosystems.  Real networks, in comparison to random networks, are both modular
and hierarchical, distributed over a sparse topology.14 

What these examples show is the nearly universal applicability of graphs, from
the abstract to the physical and gradations from the small to the large. We also see
how to build upon basic graph structures and concepts with more structure. This
breadth points to the many synergies and innovations that may be transferred from
diverse fields to advance the usefulness of graph theories. Still, despite the advances
that have occurred in graph theory, and the increased attention from social network
analysis, many graph problems remain some of the  hardest in computation. Opti-
mizations, partitioning, mapping, inferencing, traversing and graph structure com-
parisons remain challenging. Some of these challenges are only growing due to the
growth in the size of networks and graphs.

Given the ubiquity of graphs as representations of real systems and networks, it is
not surprising to see their use in computer science as means for information repre-
sentation. It is notable that we may represent virtually any data structure as a graph,
but the paradigm has even broader applicability.  The critical  breakthroughs have
come through using the graph as a basis for data models and logic models. These, in
turn, provide the basis for crafting entire graph-based vocabularies and languages.
Once we embrace such structures, it is also natural to extend the mindset to graph
databases as well.

The Value of Connecting Information

The hackneyed phrase of  ‘connect the dots’  reflects our basic intuition of the
value in making connections amongst relevant data. However, what is this value?
How might we quantify it? The reason it is useful to try to quantify the value of con-
nected information is that such an estimate helps to define what effort or cost we
can justify building our connected knowledge structures. For most big data projects,
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for example, we already know that 50% to 80% of the costs in assembling relevant
datasets is due to data wrangling — the effort to extract, transform and clean the in-
put data.5 Nowhere, however, do we know what it is worth to go to the next step of
working to connect those data. 

The ‘network effect‘ was first realized in the early days of telephone networks,
where the value of the system increased as a function of more users.6 We have also
long recognized a similar effect in connecting information and the breaking down of
information or ‘data silos.‘  This  emergence of structure is  particularly evident in
physical networks, such as the growth of a telecommunications network. Two tele-
phones can make only one connection, five can make ten connections, and twelve
can make 66 connections, etc. It is this very multiplier effect that has led to most of
the thinking of how to quantify the network effect.

The earliest effort to estimate the value of physical networks was Sarnoff’s law,
developed by  David Sarnoff, for many years the leader of the Radio Corporation of
America (RCA). He posited that the value of a broadcast network was directly propor-
tional to its number of viewers (n). However, the problem with this formulation is
that a broadcast network is only one way, from broadcaster to user. What of net-
works with interactions or two-way linkages? The benefits of such networks must
surely be more than linear.

Once we get into interaction effects, we get into multipliers. The nature of those
multipliers come from the extent of real interactions, as well as perhaps the nature
of the network itself. Metcalfe’s law was the first direct derivation from the telecom-
munications model. Robert Metcalfe formulated it about 1980 in relation to Ethernet
and fax machines. The ‘law’ was then named for Metcalfe and popularized by George
Gilder in 1993.7 The actual algorithm proposed by Metcalfe calculated the number of
unique connections in a network with n nodes as n(n − 1)/2. This formulation makes
Metcalfe’s law a quadratic growth equation. We may simplify the law8 to state that
the value of a telecommunications network is proportional to the square of the num-
ber of users of the system (n²). Gilder’s popularization and the early growth of the In-
ternet made estimating the benefits of network effects a very timely topic. As a value
measure, we can use the network effect to estimate the benefits for increasing num-
bers of users. Some have even blamed Metcalfe’s law for contributing to the creation
(and then bursting) of the ‘dot-com bubble’ of the late 1990s.9

However, the Metcalfe formulation is not universally accepted, and others have
proposed different estimates. From the perspective of social groups, Reed came up
with the largest multiplier formulation premised on arbitrary sized groups forming
amongst any and all participants (nodes).10 On the other hand, under the provocative
title, “Metcalfe’s Law is Wrong,” Briscoe, Odlyzko, and Tilly (BOT) challenged both
the Metcalfe and Reed approaches in 2006.11 Using the proxy of Internet valuation,
the authors were able to show how absurd the implications of either approach were
at  scale.  Like  the  bet  of  rice  (or  wheat)  doubling  each  of  the  64  squares  on  a
chessboard bankrupting the kingdom, we can see the exponential  implications of
these  two  ‘laws’  to  (eventually)  violate  common  sense.  The  fundamental  fallacy
claimed by the authors for both the Metcalfe and Reed approaches is that all poten-
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tial links are of equal value. There must be some law of diminishing returns to slow
the unsustainable rates of exponential or (to a lesser extent) quadratic growth. After
much hand waving, the authors chose Zipf’s law12 as their basis for this diminishing
return. To approximate this distribution, they (BOT) offered the simple n log (n) for-
mulation of Zipf’s law. This approximation is reasonable, but one that is never re-
lated directly to the real nature of graphs or networks.

Yaakov Stein, a network and signals processing researcher of the first rank, used
his experience when joining LinkedIn to help understand and quantify connections
in real networks. 13 He began without a LinkedIn account and documented his experi-
ence as he joined and expanded his network of contacts on the service. He charted
direct links, and then meticulously looked at and recorded secondary and tertiary
links. His formulation recognized that the value to an individual user equaled raising
the access to the entire network (1) for that user plus the diminishing benefit repre-
sented by the participating graph’s other participants as measured by the average
degree of separation (D). D is an inherent measure of the graph type.

Though his context was a social network, the insight is that relations diminish by
distance within a graph, with average link distance (directly related to the degree of
separation) a relevant metric. Connected ‘facts’ or ‘friends’ is essentially the same
thing. It is all about what we share amongst graph nodes. Stein’s approach grounds
the multiplier effect in an inherent characteristic of the graph: its average degree of
separation. Like Zipf’s law, the degree of separation is a distance measure, but one
now based on the real nature of graphs. Here is the Stein formulation:

where V is potential value, n is number of graph nodes, and D is the graph’s average
degree of separation. Thus, a graph with a degree of separation of 4, would exhibit a
network-wide power factor of 5/4 (4/4 plus 1/4).

I modified Stein’s approach to calculate the Value of Knowledge Graph formula-
tion, or the VKG (Viking) algorithm, using this expression:

where  V is  potential value,  F is  average assertion accuracy,  n is  number of graph
nodes, and D is the graph’s average degree of separation. F is analogous to F-measure,
the combined  precision and  recall statistic for  information retrieval and  NLP tasks
(see further  Chapter  14).  F in the case of the Viking algorithm is also a combined
statistic  that  represents  the  ‘accuracy’  (verifiable  truthfulness)  of  statements  as-
serted in the graph. 

F is essentially an estimated value for one minus the residual falsity for the aver-
age statement in a graph, after removal of all assertions that do not meet existing co-
herency, consistency or completeness tests. Sampling statements across the graph
determine F and manually testing for truthfulness (or in a logical sense, validity for
the existing statements in the graph). An F of 1 signifies complete truthfulness (accu-
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racy); an F of 0 represents absolute falsity.
Now corrected with our assumed  F factor, we can begin to tease out the value

benefits of connecting ‘facts’ versus the unconnected ‘facts.’ As with any logarithmic
function, we see that the benefit value from connections increases in a growing man-
ner at larger scales. For example, at a level of 1000 records, the benefits from connec-
tions are 7x greater than unconnected data. By the time the scale grows to 1 million
or 500 million records, the benefit of connections increases to 44x to 215x, respec-
tively. However, the potential value of connectedness is also a function of the general
degree of information separation for the given domain.

I  consolidate these various estimates of  connected value in  Figure  11-1.  At  the
nominal scales of 100,000 and 1,000,000 records, the value of data connections in
comparison to the unconnected ‘facts’ case can show huge increases.  Based on em-
pirical experience to date, I think we can say the benefits of connecting previously
unconnected data may fall somewhere within the limits of Figure 11-1. Even at rather
low scales and more loosely-connected domains, the value improvements in making
connections with data are many-fold. At larger scales for tighter networks, the multi-
pliers can become astounding.

We are still in the early phases of gathering statistics for such things, but, in gen-
eral, most any knowledge graph would have a D factor ranging from 2 to 8, as I docu-
ment in Table 11-1. We also should assume network effects are not linear. We should
expect a leveling or flattening of the curve; the benefits of connections are not limit-
less. The shape of the curve likely varies by domain and the nature of the network. It
is a topic worth studying.
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Domain 100,000 Records 1,000,000 Records

Food webs 203x 611x

Genetic differences 38x 84x

Twitter 23x 46x

Facebook 17x 33x

Potential research collaborators 14x 26x

UMBEL 8x 12x

Social networks (general) 5x 8x

Mobile ad hoc networks 3x 5x

Table 11-1: Increased Value for Connecting Nodes, Various Networks

Another implication the Viking algorithm allows us to test is the benefit of adding
structure to  our datasets.  Actually,  ‘adding structure’  is  not strictly  correct;  it  is
‘structurizing’  the  data  via  characterizations,  attributes  and  categorizations.  Of
course,  mere connections for structure’s  sake is  silly.  Not all  structure is  created
equal. From a KR perspective, typing is the most important, individual instance an-
notations the least. Assigning or classifying our records into types, for example, ap-
plies to all records across the datasets and provides powerful cross-record linkages.
Adding annotations  or  metadata  to  single  records  provides  much lower  benefits.
Each  across-dataset  structure  characterization  adds  about  25%  to  30%  value  per
structure. Adding four structural characterizations, for example, more than doubles
the ‘facts’ assertion value (~ 140%) to the datasets. The good thing is that we can add
such structure as a slight increase over standard  data wrangling efforts, and with
more impact than standard wrangling. 

The graph structures, preferably guided by domain ontologies, provide the logic
means to test for subsequent structure additions. Not only does adding structure get
easier with a foundation of existing structure, but it increases the value of the infor-
mation by orders of magnitude. At this stage, what the Viking algorithm gives us is a
defensible means for assessing the value of adding structure (through connections)
to our datasets. We see potentially huge multiplier effects that compound further
benefits with scale. (Subject to the leveling curve caveat.) We also see that the most
developed forms of structure — namely, ontologies — bring further benefits in infer-
ence and testable coherence.14

While our current proxy for value — namely, asserted ‘facts’ — is useful, a per-
haps more useful one would be ‘fact’ assertions with a monetary value. Such esti-
mates will show, again, that not all ‘facts’ are created equal, and some have more
monetary value than others. Transitioning our estimates of value to a monetary basis
will help set parameters for the cost-benefit analysis of data collection and structur-
ing that is the ultimate basis for planning such KR initiatives. 

As we look at Table 11-1 and play with some parameters, we can see some guide-
lines emerge. First, more structure always provides benefits — adding structure pro-
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vides a multiplier effect in value. Second, more connections are more valuable as a
multiplier effect than adding more data, which has an additive effect. Third, the ben-
efits of  structure increase with increasing dataset sizes  (scale).  Fourth,  particular
kinds of structure, such as types or categorizations, enable cross-dataset selections
and comparisons that are inherently more valuable than record-specific annotations.
Fifth, by adding correct and coherent connections, it may be possible to move the en-
tire graph to a lower average degree of separation (D), with further multiplier bene-
fits.  Sixth, structure can be added incrementally and appears cumulative to some
level. Seventh, we should not view data wrangling as an overall ‘cost’ to the effort
but as a means for achieving the multiplier benefits arising from structure and con-
nections.

Graphs as Knowledge Representations

Graphs  are  an  iconic  and  intuitive  way  to  visualize  and  express  connections.
Graphs, expressed in mathematical or logical form, are a rich substrate for analysis
and reasoning. Graphs appear to be the natural structure for capturing real relation-
ships in the material world and the conceptual realm.

One key  aspect  of  graphs  is  their  inherent  extensibility.  Once  we  understand
graphs as an excellent way to represent both logic and data structures, their useful-
ness to knowledge representations becomes clear. Graph-theoretic methods are par-
ticularly useful in linguistics since natural language has a discrete, connected struc-
ture. Not only can graphs represent the syntactic and compositional structure, but
they can also capture the interrelationships of terms and concepts within those lan-
guages (that is, the semantics). We see the usefulness of graph theory to linguistics by
the various knowledge bases such as WordNet (in multiple languages) and VerbNet.
Domain ontologies emphasize conceptual relationships over lexicographic ones for a
given knowledge domain. Semantic networks and neural networks are similar knowl-
edge representations. 

The main reasoning in the knowledge graph relies on its hierarchical, hypony-
mous relations and instance types. These establish the parent-child lineages and en-
able us to relate individuals (or instances, which might be entities or events) to their
natural kinds, or types. Entities belong to types that share specific defining essences
and shared descriptive attributes. For effective inferencing, it is wise to try to classify
entities into the most natural kinds possible. Clean classing into appropriate types is
one way to realize the benefits from related search and related querying. Types may
also have parental types in a hyponymous relation. This ‘accordion-like’ design, dis-
cussed in the prior Chapter 10, is an important aspect that enables us to tie external
schema to multiple points in KBpedia.

Disjointedness assertions, where two classes are logically distinct, and other relat-
edness options provide other powerful bases for winnowing potential candidates in a
graph and testing placements and assignments. Each of these factors also may be
used in SPARQL queries. These constructs of semantic Web standards, combined with
a properly constructed knowledge graph and the use of synonymous and related vo-
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cabularies in semsets, provide potent mechanisms for how to query a knowledge base.
By using these techniques, we may dial-in or broaden our queries, much in the same
way that we choose different types of sprays for our garden watering hose. We can
focus our queries to the particular need at hand. 

Once a completed graph passes its logic tests during construction, perhaps impor-
tantly after being expanded for the given domain coverage, its principal use is as a
read-only knowledge structure for making subset selections or querying. The stan-
dard  SPARQL query language,  which we occasionally  supplement  with rule-based
queries using SWRL or for bulk actions using the OWL API, is the means by which we
access the knowledge graph in real time. In many instances, such as for the KBpedia
knowledge graph, these are patterned queries. In such cases, we substitute variables
in the queries and pass those from the HTML to query templates. When doing ma-
chine  learning,  we  often  retrieve  slices  via  query  and  then  stage  them  for  the
learner. We may generate entity lists for things like training recognizers and taggers.
Some of the actions may also do graph traversals to retrieve the appropriate subset.
However, the primary real-time use of the knowledge structure is search.

Among many other options, SPARQL also gives  us the ability to query specific
property paths.15 We can invoke these options either in our query templates or pro-
grammatically.  We may programmatically broaden or narrow our searches of the
graph,  depending  on  the  relation  chosen  (subClassOf is  one  example)  and  the
length of the specified property path. Switching inferencing on or off also acts to
broaden or narrow the search swath considerably. Besides all of the standard query
options provided by the SPARQL standard, we may also remove duplicates, identify
negated items, and search inverses, select named graphs, or select graph patterns.
Beyond SPARQL and now using SWRL, we may also apply abductive reasoning and
hypothesis generation to our graphs, as well as mimic the action of expert systems in
AI  through if-then  rule  constructs  based on any  structure within  the  knowledge
graph. A helpful online tutorial with examples helps highlight some of the possibili-
ties in combining OWL 2 with SWRL.16 

UPPER, DOMAIN AND ADMINISTRATIVE ONTOLOGIES

The root of the  ontology term is the Greek  ontos, or  being or the  nature of things.
Classical philosophers used the term ontology for the study of the nature of being or
the world, the nature of existence. Tom Gruber, among others, made the term popu-
lar in computer science and artificial intelligence about 15 years ago when he defined
ontology as a “formal specification of a conceptualization.” Since then, I have contin-
ued to find ontology one of the harder concepts to communicate to clients and quite
a muddled mess even as used by some practitioners. I have concluded that this prob-
lem is not because I have failed to grasp some ephemeral nuance, but because the
‘ontology’ term as used in practice is indeed fuzzy and imprecise.
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A Lay Introduction to Ontologies

Ontologies are the structural  frameworks for organizing information on the se-
mantic Web and within semantic organizations.1 Ontologies have the structural form
of a graph; we often use  knowledge graph synonymously. Ontologies provide unique
benefits in discovery, flexible access, and information integration due to their inher-
ent connectedness. We can layer ontologies on top of existing information assets,
which means they are  an  enhancement and not a  displacement for prior invest-
ments. Moreover, ontologies may be developed and matured incrementally, which
means their adoption may be cost-effective as benefits become evident.

Ontologies provide an organizing context for relating disparate information to-
gether and for making meaningful inferences. The framework itself is a function of
the worldview, context and domain scope at hand. Flexibility here is not weakness; it
is the power to capture the meaningful vocabulary and discourse for entire domains
of knowledge. The trick to designing a proper ontology is to maintain internal coher-
ence and self-consistency while capturing the vocabulary and discourse of its stake-
holders and users. When done, it is then possible to relate disparate information and
data to other data and to make intelligent business inferences. So, the use of an on-
tology does not limit freedom. It does set the context for making connections and
setting relations. As long as it is coherent, the ‘correct’ ontology is the one that best
captures the scope and domain at hand, and is one that is continually responding to
the open nature of knowledge and its community of users. 

When I refer to the idea of ‘worldview’ as synonymous with an ontology, I do not
mean that as cosmic, but how we may convey a given domain or problem area. One
group might choose to describe and organize, say, automobiles, by color; another
might choose body styles such as pick-ups or sedans; or, still,  another might use
brands such as Honda and Ford. None of these views is  inherently ‘right’  (indeed
multiples might be combined in a given ontology), but each represents a particular
way — a ‘worldview’ — of looking at the domain. So long as all ascertainable ‘facts’ in
an ontology may be confirmed and its logic kept consistent, different ‘worldviews’
are perfectly acceptable.

Understanding, using and manipulating ontologies can bring practical benefits:

 Ontologies help make explicit the scope, definition, language, and meaning (se-
mantics) of a given knowledge domain or worldview;

 Ontologies may represent  any form of  unstructured  (documents or text),  semi-
structured (XML or Web pages) or structured (database) data;

 Ontologies  provide a  coherent  navigation and search mechanism for moving
through disparate information spaces, with any node or edge providing a possi-
ble entry point;

 Ontologies, if hierarchically structured in part, enable the power of inheritance,
reasoning, and inference;

1 I personally prefer an embracing understanding of the term, consistent with Deborah McGuinness’s 2003 
paper, Ontologies Come of Age.17
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 Ontologies may provide the power to generalize and hypothesize (abductive rea-
soning) about their domains; 

 Ontologies provide guidance on how to correctly ‘place’ information in that do-
main, useful for external concept matching and mapping;

 Ontologies can provide a more effective basis for information extraction or con-
tent clustering ;

 Ontologies  may be queried and filtered to provide pre-qualified  corpora and
training sets, useful to unsupervised and supervised machine learning, respectively; 

 Ontologies may be a source of structure and controlled vocabularies helpful to
disambiguate context and to inform domain ‘lexicons’;

 Ontologies can help relate and ‘place’ other ontologies or worldviews to one an-
other; in other words, ontologies can help organize ontologies. 

The most prevalent use of ontologies at present is in semantic search. Semantic
search has benefits over conventional search by being able to make inferences and
matches not available to standard keyword retrieval. Perhaps a pinnacle application
for ontologies is to help map and integrate other structures and information, both
within and without the organization. Furthermore, if we populate a knowledge graph
sufficiently with accurate instance data, often from various knowledge bases, then
ontologies can also be the guiding structures for efficient machine learning and arti -
ficial intelligence.

Ontologies are A Family of Graphs

If you pose the query ‘ontology filetype:owl‘ to Google, you will see more than
10,000 results. According to Ontolog Forum, a community of ontology practitioners,
we can classify ontologies by some key measures. Expressiveness is the extent and ease
by which an ontology can describe domain semantics. Structure they define as the de-
gree of organization or hierarchical extent of the ontology. They further define gran-
ularity as the level of detail in the ontology. By these notions, we may include the
concepts  of  folksonomies and  topic  maps in  the definition.  The Forum also  defines
other dimensions of use, logical basis, and purposes for ontologies.18 One of these di-
mensions is to characterize ontologies by ‘levels,’ specifically upper, middle and lower
levels. These are useful distinctions, but we prefer to classify them into upper, domain
and administrative ontologies. 

Upper ontologies provide the top-level conceptual structure and schema, which of-
ten function as the reference structure for specific domain ontologies.  Examples of
upper-level ontologies include the Suggested Upper Merged Ontology (SUMO), the
Descriptive Ontology for Linguistic and Cognitive Engineering (DOLCE), PROTON, Cyc
and BFO (Basic Formal Ontology). Most of the content in these upper-levels is akin to
broad, abstract relations or concepts. Most all of them have both a hierarchical and
networked  structure,  though  their  actual  subject  structure  relating  to  concrete
things is pretty weak. KBpedia’s Knowledge Ontology (KKO) is an example of an up-
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per ontology.
Domain (or content) ontologies embody more of the traditional ontology functions

such  as  information  interoperability,  inferencing,  reasoning  and  conceptual  and
knowledge capture of the applicable domain.  We can broadly or narrowly define
these domains; specific instantiations may cover multiple or a diverse range of sub-
ject matter. In KBpedia’s design, we compose the domain ontology of multiple ty-
pologies, including for relations and attributes. 

Administrative ontologies govern internal application use and user interfaces. These
areas might relate to providing metadata as a result of workflow steps and general
workflow management, as well as driving visualization or display widgets or inform-
ing user interfaces. Possible user interface aids provided by administrative ontolo-
gies may include attribute labels and tooltips; navigation and browsing structures
and trees; menu structures; auto-completion of entered data; contextual dropdown
list choices; spell checkers; and online help systems. Administrative ontologies may
also support internal applications such as workflow systems, access control, archive
management, and the like.

Incipient Potentials

For  over  twenty  years,  some researchers  such  as  Nicola  Guarino  (1998)19 and
Michael  Uschold (2008)20 have argued that we could rely upon ontologies for even
more central aspects of overall applications, what Uschold termed ’ontology-driven
information systems.’ I agree. Here are five areas of (largely) untapped potential:

1. Lack of a well-known relations ontology. Structurally, we may use OWL to reason
over actions and relations in a similar means as we reason over entities and
types, but our common ontologies have yet to do so. Creating such schema is
within grasp since we have language structures such as VerbNet and other re-
sources we could put to the task. KBpedia has its own relations typologies that
attempt to capture these aspects;

2. Lack of a well-known  attributes ontology. The lack of a schema and organized
presentation of attributes means it is challenging to do ABox-level integration
and interoperability. This gap is largely due to the primary focus on concepts
and  entities  in  the  early  stages  of  semantic  technologies.  As  the  KBpedia
knowledge graph shows, it is possible to formulate logical and reusable schema
for instance attributes as well; 

3. A  quantity units ontology is the next step beyond attributes, as we attempt to
bring data values for quantities (and well as the units and labeling used) into
alignment. The  QUDT ontologies (quantities, units and data types), or some-
thing similar, may provide such a template;

4. A  statistics and probabilities ontology is also appropriate given the idea of con-
tinua (Thirdness) from Peirce and capturing the idea of fallibility. Probabilistic
reasoning is  still  a young field in ontology.  Some early possibilities  include
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Costa21 and the PR-OWL ontology using Multi-Entity Bayesian Networks,22 prob-
abilistic first-order logic that goes beyond Peirce’s classic deterministic logic,
as well as fuzzy logic applied to ontologies23; and

5. ODapps (‘ontology-driven applications’) are generic software packages driven
by ontology specifications for specific applications. They may enable us to: 1)
import or export datasets; 2) create, update, delete (CRUD) or otherwise man-
age data records; 3) search records with full-text and faceted search; 4) manage
access  control  at  the  interacting  levels  of  users,  datasets,  tools,  and  CRUD
rights; 5) browse or view existing records or record sets, based on simple to
possible  complex  selection  or  filtering  criteria;  or  6)  process  results  sets
through workflows of various natures, involving specialized analysis, informa-
tion extraction or other functions. 

Realizing these potentials will  enable our  knowledge management (KM) efforts to
shift to the description, nature, and relationships of the information environment.
Under this broadened understanding, we now give explicit focus to the actual con-
cepts, terminology, and relations that comprise coherent ontologies, subject to the
direct  control and refinement by their users,  the knowledge workers  and subject
matter experts.

Good Ontology Design and Construction

While Chapter 14 focuses on best practices and includes a section on ontologies, it
is worthwhile here to reiterate three design considerations that should go into the
construction  of  an  ontology.  These  three  factors  are  coherence,  completeness,  and
scope, introduced in prior chapters.

Coherence is a state of logical, consistent connections, a logical framework for in-
telligently  integrating  diverse  elements.  In  the sense of  a  knowledge  graph,  this
means we have drawn the right connections (edges or predicates) between the object
nodes in the graph. Structure without coherence is where we have not drawn correct
or complete connections. The nature of the content graph lacks logic. The hip bone is
not connected to the thigh bone, but perhaps to something wrong or ludicrous, like
the arm or cheekbone.

Completeness is to conform to some minimum standard of characterization. For
KBpedia, we have set that minimum as a preferred label, robust set of alternative la-
bels (semset), a definition, language characterization, and one or more types or par-
ents. If we have information on attributes, we should include that as well. However,
it is not necessary to discover and document all attributes, though we should add
new ones as we encounter them. See further what we discussed for completeness for
reference concepts (RCs) in Chapter 9. 

Scope means we answer a series of questions in the positive for the ontology:

 Does the ontology provide balanced coverage of the subject domain?1 This ques-

1 The sense of ‘balance’ is from the perspective of the sponsor, roughly bounded by the topic domain at hand.
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tion gets at the issue of properly scoping and bounding the subject coverage
such that the breadth and depth are roughly equivalent; 

 Does the ontology embed its domain coverage into a proper context? Re-using
existing and well-accepted vocabularies and including concepts in the subject
ontology that aid such connections is good practice; 

 Are the relationships in the ontology coherent, per our earlier condition? and

 Has the ontology been constructed according to good practice?

If we can answer these questions affirmatively — including importantly the use of
testing scripts throughout construction — then we deem the ontology ready for pro-
duction-grade use.

The skills needed to create these ontologies are logic, coherent thinking, and do-
main knowledge. That is, any subject matter expert or knowledge worker likely has
the skills required to contribute to useful ontology development and refinement. On-
tology development is a trainable skill.

KBPEDIA’S KNOWLEDGE BASES

We want knowledge sources, putatively  knowledge bases, to contribute the actual
instance data to populate our ontology graph structures. Matching with knowledge
bases can also point out gaps and oversights in our knowledge graphs that we should
augment to provide better domain coverage. Sufficient instance data is an absolute
essential if we are to use our knowledge structures for supervised or unsupervised ma-
chine learning, or what we call herein KBAI.

We want knowledge bases to define and populate attributes for their instances.
This kind of information is what we see in a data record. The best knowledge bases
have large data stores, all  consistently characterized. We prefer large sources be-
cause we can spread the effort of mapping and conversion across more records.

We prefer knowledge bases that provide identity and information for disambigua-
tion. Identity works in that we can point to authoritative references (with associated
Web identifiers) for all of the individual things and properties in our relevant do -
main. We can use these identities to decide the ‘canonical’ form, which also gives us a
common reference for referring to the same things across information sources or
data sets. We also want richness in how to describe those things. 

Besides  our  earlier  criteria  of  consistency,  coherence,  and  completeness,  our
desiderata for what we find useful in a knowledge base includes:

 Comprehensive — does the knowledge base support the domain scope at hand?
Smaller, focused knowledge bases may be quite valuable if the overlap is good; 

 Referencable — is the knowledge source authoritative? Does it use IRIs or URIs for
referencing its objects? 

Work is always required to bring the knowledge graph up to this level of coverage. This sense is different 
for a library, where ‘balance’ is from the perspective of the patrons.
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 Open Standards — does it meet open standards? It is often easier to interoperate
with open standards with more tooling available; 

 Computable — does the KB support reasoning, inference, set selection, relations,
attributes, data types, and retrieval? If so, incorporation is easier; and

 Multi-lingual — if not already multi-lingual, does it have a structure (such as ID v
label-based) that supports multiple languages? Support for multiple languages
increases usefulness and applicability. 

The idea that we can purposefully craft knowledge bases to support knowledge-
based artificial intelligence, or KBAI, flows from these kinds of realizations. We begin
to see that we can tease out different aspects of a knowledge base, each with its logic
and relation to the other aspects.

KBpedia KBs

As of 2018, about 20 different knowledge bases contribute the instance data and
some key mappings to KBpedia. Six of these are primary ones, defined as both adding
large numbers of instances but scope coverage to KBpedia as well. We have selected
the secondary KBs based on their common usage or their ability to contribute more
limited concepts and structure to the overall KBpedia.

Primary KBs

Wikipedia,  the  primary  source  for  structure,  concepts,  and  definitions,  and
Wikidata, the primary source for millions of instance data and a rich system of at -
tributes, are the two most significant contributors to KBpedia. We use DBpedia as a
source for direct machine-readable Wikipedia data. While we first root the concep-
tual schema of KBpedia in Peirce’s universal  categories,  we use the  OpenCyc and
UMBEL knowledge bases to inform the construction of KBpedia’s typologies. We ex-
tend KBpedia’s geographical and geopolitical reach using the GeoNames knowledge
base. Here is a bit longer description of each source, current as of mid-2018: 

 Wikipedia is a crowdsourced, free-access and free-content knowledge base of hu-
man knowledge. It has more than 5 million articles in its English version. Nearly
35 million articles exist across all Wikipedias in about 280 different languag  es  .
Though not universal, most all recent AI advances leveraging knowledge bases
have utilized Wikipedia in one way or another, due to its scope, quality, and
open-access structure. Wikipedia is a common denominator in question answer-
ing and commercial natural language applications that leverage artificial intelli-
gence,  witness  Siri,  Watson,  Cortana and  Google  Now,  among  others.  Even
Freebase, the core of Google’s Knowledge Graph, did not blossom as a separate
data crowdsourcing concern until its former owner, Metaweb, decided to bring
Wikipedia into its system. More than 1000 research papers leverage Wikipedia
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for AI and NLP purposes,24 Many other knowledge bases are derivatives or en-
hancements to Wikipedia in one way or another.1 One is hard-pressed to iden-
tify any large-scale knowledge base, available in electronic form, that is being
exploited as much for AI or semantic technology purposes;26

 Wikidata is a crowdsourced, open knowledge base of (currently) about 55 million
structured  entity records. Each record consists of  attributes and values with ro-
bust cross-links to multiple languages. Wikidata is a crucial entities source;

 Cyc is a common-sense knowledge base developed over 20 years involving about
1000 person-years of effort. The smaller open-source OpenCyc version is the one
we use in KBpedia; an OWL version was available until that project ended in
2017. A ResearchCyc version of the entire system is still available to researchers.
The Cyc platform contains a dedicated logic language, CycL, and has many built-
in functions in areas such as natural language processing, search, inferencing and
the like. UMBEL is based on a subset of OpenCyc;

 DBpedia is a project that extracts structured content from  Wikipedia and then
makes that data available as linked data. Millions of entities are characterized by
DBpedia in this way. As such, DBpedia is one of the largest — and most central —
hubs for linked data on the Web;

 GeoNames integrates geographical data such as names of places in various lan-
guages,  elevation,  population,  and  others  from  multiple  sources.  We  obtain
nearly 800 feature descriptors from GeoNames for organizing geographic and
geopolitical information, as well as millions of well-characterized and -defined
place names and regions; and

 UMBEL, short for Upper Mapping and Binding Exchange Layer, is an upper ontol-
ogy of about 35,000 reference concepts, designed to provide universal mapping
points for relating different ontologies or schema to one another, and a vocabu-
lary for aiding that mapping.

The combination of these sources, organized by Peirce’s triadic universal categories
and typologies in the KKO, makes KBpedia a singularly unique knowledge resource. 

Secondary KBs

We have mapped about 15 leading external vocabularies and ontologies to KBpe-
dia, with the first three playing a more prominent role. This listing of mappings is: 

schema.org This extendable vocabulary describes common things, businesses, and events on 
the Web. Major search engines, including Google, sponsor it. There are more 
than 700 types in the vocabulary. Millions of Web documents are marked up with
this vocabulary. 

1 Though a bit dated, an 82-page technical report by Olena Medelyan et al. from the University of Waikato in 
New Zealand, Mining Meaning from Wikipedia,25 describes the unique structural and content reasons why 
Wikipedia is an absolutely irreplaceable source for notable entities, and semantic Web and natural language
research.
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DBpedia Ontology This ontology, an extension of the base DBpedia knowledge base, is meant to be 
an organizational framework for the information in Wikipedia infoboxes. There 
are more than 700 types in this ontology. 

Dublin Core Dublin Core, and its metadata extensions, is a generalized vocabulary for de-
scribing conceptual works, developed by the library community. It is a widely 
used core vocabulary across many domains. 

Bibliography 
Ontology 

This generalized bibliographic ontology is used to describe books and periodi-
cals; it is the most widely used bibliographic schema. 

Description of a 
Project (DOAP) 

A general vocabulary for describing projects. 

Friend of a Friend FOAF is a project devoted to linking people and information using the Web based
on social networks, representational networks, and information networks. 

FRBR This vocabulary for the Functional Requirements for Bibliographic Records is a 
recommendation of the International Federation of Library Associations and In-
stitutions (IFLA) for how to structure catalog databases to reflect the conceptual 
structure of information resources. 

Geo Geo is a vocabulary for representing latitude, longitude and altitude information 
in the WGS84 geodetic reference schema. 

Music Ontology MO is a vocabulary for describing music-related topics (i.e., artists, albums and 
tracks). 

Open 
Organizations 

OO is a vocabulary that provides supplementary terms for organizations wishing 
to publish open data about themselves. 

Organization 
Ontology 

The Organization Ontology is a core ontology for organizational structures, 
aimed at supporting linked data publishing of organizational information across 
some domains. 

Programmes 
Ontology 

The Programmes Ontology is a simple vocabulary for describing media pro-
grams. It covers brands, series (seasons), episodes, broadcast events, broadcast 
services, etc 

SIOC The SIOC initiative (Semantically Interlinked Online Communities) is a vocabu-
lary for the integration of online community information. 

Time Ontology The OWL-Time ontology is a vocabulary of temporal concepts, for describing the 
temporal properties of resources in the world or described in Web pages. 

TRANSIT TRANSIT is a vocabulary for describing transit systems, routes, stops, and sched-
ules. 

US PTO The US Patent and Trademark Office provide links to millions of organizations 
and brands that have sought or received trademark protection from the US gov-
ernment. 

Table 11-2: Secondary Knowledge Bases for KBpedia

The base KBpedia also includes entities mappings (organizations only) to Freebase
(though abandoned, prior users have transferred much Wikidata) and the US Patent
and Trademark Office (USPTO) databases. Since these are not full mappings, we do
not include them in the statistics for the base KBpedia.
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Candidate KBs for Expansion

For specific domains, multiple and rich sources may exist to expand KBpedia to
accommodate that scope.  Chapter  13 develops the topics  of finding and screening
such sources, using some of the acceptance criteria above. For now, let me note that,
in varying degrees, vocabularies, thesauri, taxonomies, and, even, tables of content
may be useful starting points for domain concepts and scope expansions. One may
find local instance data from internal relational datastores and spreadsheets. Some-
times you may find useful domain data and structure from academic publications,
trade organizations, or various sector studies.

As for KBpedia, some new areas that we are contemplating include country-spe-
cific  economic and demographic  data,  more  online databases,  brand and product
data, expanded corporate and ownership data, sustainability metrics associated with
significant economic pathways, or lexical databases, such as WordNet or VerbNet. As
a sponsor of the open source project, we will be responsive to multi-lingual versions
and will work to catalyze more mappings, more linkages, and more extensions.
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