Posted:January 20, 2014

Open Semantic Framework New OSF Platform Leapfrogs Earlier Releases in Features and Capabilities

After nearly five years of concentrated development — including the past 20 months of quiet, background efforts — Structured Dynamics is proud to announce version 3.0 of its open-source Open Semantic Framework. OSF is a turnkey platform targeted to enterprises to bring interoperability to their information assets, achieved via a layered architecture of semantic technologies. OSF can integrate information from documents to Web pages and standard databases. Its broad functions range from information ingest and tagging to search and data management to publishing.

Until today, the version available for download was OSF version 1.x. While capable as an enterprise platform — indeed, it has been in use by a number of leading global enterprises since development first began — the capability of the platform was spotty and required consulting expertise to configure and set-up. SD was hired by Healthdirect Australia (HDA) nearly two years ago to enhance OSF’s capabilities and integrate it more closely with the Drupal open-source content management system, among other modern enterprise requirements. The OSF from those developments — the non-public version 2.0 specific to HDA — has now been generalized for broader public use with today’s public announcement of version 3.0.

A More Complete Enterprise Platform

HDA's healthinsite Portal

Not unlike many large organizations, HDA had specific enterprise requirements when it began its recent initiative. Included in these were stringent security, broad use of proven open-source applications, governance and workflow procedures, and strict content authoring and management guidelines. These requirements further needed to express themselves via a sequence of deployment and testing environments, all conducted by a multi-vendor support group following agile development practices.

These requirements placed a premium on performance, scalability and interoperability, all subject to repeatable release procedures and scripts. OSF’s initial development as a more-or-less standalone platform needed to accommodate an enterprise-wide management model involving many players, environments and applications. Prior decisions based on OSF alone now needed to consider and bridge modern enterprise development and deployment practices.

Tighter integration with Drupal was one of these requirements (see next section), but other OSF changes necessary to accommodate this environment included:

  • A new security layer — the initial OSF security model was based on IP authentication. Given the sensitivity of the health data managed by HDA, such a simplistic approach was unacceptable. The actual HDA deployment relied on a third-party security application. However, what was learned from that resulted in a key-based access and validation model in the OSF v 3.0 update
  • A new revisioning system — content authoring and governance required multiple checks in the workflow, and requirements to review prior edits and invoke possible rollbacks. The result was to add a completely new revisioning capability to OSF
  • Middleware integration and APIs — in a multi-vendor environment, OSF operates in part as a central repository for all system information, which third parties must more readily and easily be able to access. Thus, besides the security aspects, a much improved programmatic API and a generalized search API were added to the OSF platform
  • New, additional Web services — the requirements above meant that seven new OSF Web services were added to the system, bringing the total number of current Web services to 27
  • New caching layer — because of its Web-service design, information access and mediation occurs via a large number of endpoint queries, many of which are patterned and repeated. To improve overall performance, a new caching layer was added to OSF that significantly improved performance and reduced access burdens on the OSF engines
  • Workflow integration — improved workflow sequences and screens were required to capture workflow and goverance demands, and
  • Multilingual support — like most larger organizations, HDA has a diversity of native languages throughout its user base. Though OSF had initially been explicitly designed to support multilinguality, specific procedures and capabilities were put in place to more easily support multiple languages in OSF.

Tighter Integration with Drupal

When Fred Giasson and I first designed and architected the Open Semantic Framework in 2009, we made the conscious decision to loosely couple OSF with the initial user interface and content management system, Drupal. We did so thinking that perhaps other CMS frameworks would be cloned onto OSF over time.

Time has not proven this assumption correct. Client experience and HDA’s interests suggested the wisdom of a tighter coupling to Drupal. This shift arose because of the great flexibility of Drupal with its tens of thousands of add-on modules and its ecosystem of capable developers and designers. Our early decision to keep Drupal at arm’s length was making it more difficult to manage an OSF instance. Existing Drupal developers were not able to employ their Drupal expertise to manage OSF portals.

We pivoted on this error by tightening the coupling to Drupal, which involved a number of discrete activities:

  • Upgrade to Drupal 7 — earlier versions of OSF used Drupal 6. We migrated the code base to Drupal 7. That, plus the other Drupal changes noted below, resulted in re-writing about 80% of the OSF code base related to Drupal
  • Alternative Drupal data storage — Drupal’s own evolution in version 7 (and continuing with version 8) is to abstract its underlying information model around entities and fields, abstractions that are much better aligned with OSF’s RDF data model. As these entity and field changes were exposed in Drupal APIs, it was possible for us to write an entirely new information model underlying Drupal. Drupal administrators using OSF are now able to use OSF solely as the data model underneath Drupal (rather than the more standard MySQL)  or any mixed portions in between. The typical OSF for Drupal design now uses OSF for all content storage, with MySQL reserved for internal Drupal settings (à la MVC)
  • Drupal connectors — certain common or core Drupal modules, such as Fields, Entities, Search, and Views, are either common utilities for Drupal developers or are themselves core bases for third-party modules. Because of their centrality, SD developed a series of “connectors” that enable these modules to be used as is while transparently communicating with and writing to OSF. Thus, Drupal developers can use these familiar capabilities without needing particular OSF knowledge
  • Major updates to Drupal modules — because of the changes above, the existing OSF Drupal modules (called conStruct in the earlier versions) were updated to take advantage of the common terminology and tighter integration
  • Major updates to Drupal widgets — similarly, the standard OSF data and visualization widgets used with Drupal (called Semantic Components in the earlier versions) were also updated to work in this more tightly integrated environment.

Expanded Search Capabilities and Web Services

Some of the extended capabilities in OSF v 3.0 are noted above, including the expanded roster of Web services. However, the OSF Search Web service, which is by far the most used OSF endpoint, received massive improvements in this latest release.

First, OSF Search now uses a new query parser, which provides the capability to change the ranking of search results by boosting how specific query components get scored. Types, attributes, datasets or counts may be used to vary any given search result, including different occurrences on the same page. It is also now possible to add restrictions to the search queries, including restricting results to a specified set of attributes.

This flexibility is highly useful wherein certain structured pages contain blocks or sections with patterned search results. This structuring leads to the ability to create generic page templates, wherein search queries and results vary within the layout. An “events” block may score differently than, say, a “related topics” block, all of which in turn can respond to a given context (say, “cancer” versus “automobiles”) for a given page (and its template).

These repeated patterns lend themselves to the use of reusable “search profiles,” which are predefined queries that may include context variables. These profiles, in turn, can be named and placed on page layouts. Existing profiles may be recalled or invoked to become patterns for still further profiles. The flexibility of these search profiles is immense, and the parameters used in constructing them can be quite extensive.

Thus, OSF version 3.0 includes the new Query Builder module. Via an intuitive selection interface, users may construct search queries of any complexity, and then save and reuse them later as search profiles.

Lastly, registering, configuring and managing OSF instances and datasets into Drupal has never been easier. The new OSF Configure module centralizes all the features and options required for these purposes, which are then managed by a new suite of tools (see next).

Automated Installation and Management Tools

Standard enterprise deployments that proceed from development to production require constant updates and versions, both in application code and content. Keeping track and managing these changes — let alone deploying them quickly and without error — requires separate management capabilities in their own right. The new OSF thus has a number of utilities and command-line tools to aid these requirements:

  • OSF Installer — this tool installs and configures all the pieces required by the OSF stack, then runs the OSF Tests Suites to make sure that all functionality is fully operational on the new server
  • OSF Tests Suites — composed of 746 tests and 4139 assertions, these tests may be run every time an OSF instance is deployed or code is changed. The tests measure all of the input parameters of each endpoint, combinations thereof, mime types, and expected errors returned by each endpoint
  • OSF Ontologies Management Tool — (OMT) is used to manage ontologies, list ontologies, create/import new ones, delete existing ones, or to generate underlying ontological structures
  • OSF Datasets Management Tool — (DMT) is used to manage datasets of a OSF instance, enabling the user to create, delete, update, import and export datasets directly from the command line
  • OSF Permissions Management Tool — (PMT) is used to manage, list, create or delete access permissions groups and users
  • OSF Data Validator Tool — (DVT) is used to perform a series of post-indexation data validation tests and return validation errors if any are found.

Tempered via Enterprise Development and Deployments

The methods and processes by which these advances have been made all occurred within the context of state-of-the-art enterprise IT management. Experience with supporting infrastructure tools (such as Jira, Confluence, Puppet, etc.) and agile development methods are part of the ongoing documentation of OSF (see next). This experience also bolsters Structured Dynamics’ ability to work with other third-party applications at the middleware layer or in support of enterprise deployments.

Comprehensive and Completed Updated Documentation

The Open Semantic Framework has evolved considerably since its conception now five years ago. In its early development, components and pieces were sometimes developed in isolation and then brought into the framework. This jagged development path led to a cacophony of names and terms to characterize portions of the OSF stack. This terminology confusion has made it more difficult than it needed to be to understand the vision of OSF, the layers of its architecture, or the interactions between its components and parts.

In making the substantial efforts to update documentation from OSF version 1.x to the current version 3.0, terminology was made consistent and code references were cleaned up to reflect the simpler OSF branding. This clean up has led to necessary updates across multiple Web sites maintained by Structured Dynamics with some relationship to OSF.

The Web site with the most changes required has been the OSF Wiki. In its prior incarnation, called TechWiki, there were nearly 400 technical articles on OSF. That site has now been completely rewritten and re-organized. Nearly two hundred new articles have been written in support of OSF v 3.0. Terminology related to the older cacophony (see correspondance table here) has (hopefully) been updated and corrected. Most architectural and technical diagrams have been updated. Additional documentation is being posted daily, catching up with the experience of the past twenty months.

Moving Beyond the Established Foundation

Open Semantic Framework

SD is pleased that enterprise sponsors want to continue beyond the Open Semantic Framework’s present solid foundations. While we are not at liberty to discuss specific client initiatives, a number of ongoing developments can be described broadly. First, in terms of the key engines that provide the core of OSF’s data management capabilities, initiatives are underway in the areas of visualization, business analytics and workflow orchestration and management. There are also efforts underway in more automated means for direct ingest of quality Web-based information, both based on linked data and from Web APIs. We are also pleased that efforts to further extend OSF’s tight integration with Drupal are also of interest, even while the integration efforts of the past months have not yet been fully exploited.

To Learn More

To learn more, make sure and check out the re-organized OSF wiki. See specifically the complete OSF overview, the list of all the OSF 3.0 features, and the list of all the new features to OSF 3.0. Also, for a complete soup-to-nuts view of what it takes to put up a new OSF installation, see the Users Guide. Lastly, for a broad overview of OSF, see its reference architecture and the overviews on its dedicated OSF Web site.

As a final note, Structured Dynamics would like to thank its corporate sponsors of the past five years for providing the development funds for OSF, and for agreeing with the open source purposes of the Open Semantic Framework.

Posted:May 21, 2013

Neighbourhoods of Winnipeg - NOWFirst and Largest Local Government Site to Exclusively Embrace Semantic Technologies

The City of Winnipeg, the capital and largest city of Manitoba, Canada, just released its “NOW” portal celebrating its diverse and historical 236 neighborhoods. The NOW portal is one of the largest releases of open data by a local government to date, with some 57 varied datasets now available ranging from local neighborhood amenities such as pools and recreation centers, to detailed real estate and economic development information. Nearly one-half million individual Web pages comprise the site, driven exclusively by semantic technologies. Nearly 10 million RDF triples underly the site.

In announcing the site, Winnipeg Mayor Sam Katz said, “We want to attract new investment to the city and, at the same time, ensure that Winnipeg remains healthy and viable for existing businesses to thrive and grow.” He added, “The new web portal, Neighbourhoods of Winnipeg—or NOW—is one way that we are making it easy to do business within the City of Winnipeg.”

NOW provides a single point of access for information such as location of schools and libraries, Census and demographic information, historical data and mapping information. A new Economic Development feature included in the portal was developed in partnership with Economic Development Winnipeg Inc. (EDW) and Winnipeg REALTORS®.

Our company, Structured Dynamics, was the lead contractor for the effort. An intro to the technical details powering the Winnipeg site is provided in the complementary blog post by SD’s chief technologist, Fred Giasson. These intro announcements by SD will be later followed by more detailed discussions on relevant NOW portal topics in the coming weeks.

Background and Formal Release

But the NOW story is really one of municipal innovation and a demonstration of what a staff of city employees can accomplish when given the right tools and frameworks. SD’s real pleasure over the past two years of development and data conversion for this site has been our role as consultants and advisors as the City itself converted the data and worked the tools. The City of Winnipeg NOW (Neighbourhoods of Winnipeg) site is testament to the ability of semantic technologies to be learned and effectively used and deployed by subject matter professionals from any venue.

In announcing the site on May 13, Mayor Sam Katz also released a short four-minute introductory video about the site:

What we find most exciting about this site is how our open source Open Semantic Framework can be adopted to cutting-edge municipal open data and community-oriented portals. Without any semantic technology background at the start of the project, the City has demonstrated its ability to manage, master and then tailor the OSF framework to its specific purposes.

Key Emphases

As its name implies, the entire thrust of the Winnipeg portal is on its varied and historical neighborhoods. The NOW portal itself is divided into seven major site sections with 2,245 static pages and a further 425,000 record-oriented pages. The number of dynamic pages that may be generated from the site given various filtering or slicing-and-dicing choices is essentially infinite.

Neighborhoods

The fulcrum around which all data is organized on the NOW portal are the 236 neighborhoods within the City of Winnipeg, organized into 14 community areas, 15 political wards, and 23 neighborhood clusters. These neighborhood references link to thousands of City of Winnipeg and external sites, as well as have many descriptive pages of their own.

Some 57 different datasets contribute the information to the site, some authored specifically for the NOW portal with others migrated from legacy City databases. Coverage ranges from parks, schools, recreational and sports facilities, and zoning, to libraries, bus routes, police stations, day care facilities, community gardens and more. More than 1,400 attributes characterize this data, all of which may be used for filtering or slicing the data.

Property and Economic Development

A key aspect of the site is its real estate, assessment and zoning information. Every address and parcel in the city — a count nearing 190,000 in the current portal — may be looked up and related to its local and neighborhood amenities. Up to three areas of the City may be mapped and compared to one another, felt to be a useful tool for screening economic development potentials.

Census Data

All of the neighborhood and neighborhood clusters may be investigated and compared for Census data in two time periods (2001 and 2006). Types of Census informaton includes population, education, labor and work, transportation, education, languages, income, minorities and immigration, religion, marital status, and other family and household measures.

Any and all neighborhoods may be compared to one another on any or all of these measures, with results available in chart, table or export form.

Images and History

Images and history pages are provided for each Winnipeg neighborhood.

Mapping

Throughout, there are rich mapping options that can be sliced and displayed on any of these dimensions of locality or type of information or attribute.

More to Come!

The basic dataset authoring framework will enable City staff (and, perhaps, external parties or citizens) to add additional datasets to the portal over time.

Key Functionality and Statistics

The NOW site is rich in functionality and display and visualization options. Some of this functionality includes the:

NOW Ontology Graph

NOW Graph Structure

NOW is entirely an ontology-driven site, with both domain and administrative ontologies guiding all aspects of search, retrieval and organization. There are 12 domain ontologies govering the site, two of which are specific to NOW (the NOW ontology and a Canadian Census ontology). Ten external ontologies (such as FOAF, GeoNames, etc) are also used.

The NOW ontology, shown to the left, has more than 2500 subject concepts within it covering all aspects of municipal governance and specific Winnipeg factors.

Relation Browser

All of the 2500 linked concepts in the NOW ontology graph can be interactively explored and navigated via the relation browser. The central “bubble” also presents related, linked information such as images, Census data, descriptive material and the like. As adjacent “bubbles” are clicked, the user can navigate or “swim through” the NOW graph.

NOW Relation Browser

NOW Web Maps

Web Map

Nearly all of the information on the NOW site — or about 420,000 records — contains geolocational information of one form or another. There are about 200,000 points of interest records, another 200,000 area or polygon records, and about 7,000 paths and routes such as bus routes in the system.

All 190,000 property addresses in Winnipeg may be looked up and mapped.

Virtually all of the 57 datasets in the system may be filtered by category or type or attribute. This information can be filtered or searched using about 1400 different facets, singly or in combination with one another.

Various map perspectives are provided from facilities (schools, parks, etc.) to economic development and history, transportation routes and bus stops, and property, real estate and zoning records.

Templates

Depending on the type of object at hand, one of more than 50 templates may be invoked to govern the display of its record information. These templates are selected contextually from the ontology and present different layouts of map, image, record attribute or other information, all keyed by the governing type.

Each template is thus geared to present relevant information for the type of object at hand, in a layout specific to that object.

Objects lacking their own specific templates default to the display type of their parent or grandparent objects such that no object type lacks a display format.

Multiple templates are displayed on search pages, depending upon the diversity of object types returned by the given search.

Example of a NOW Record Template

Example of a NOW Census Chart

Graph Statistics

The NOW site provides a rich set of Census statistics by neighborhood or community area for comparison purposes. The nearly half million data points may be compared between neighborhoods (make sure and pick more than one) in graph form (shown) or in tabular form (not shown).

Census information spans from demographics and income to health, schooling and other measures of community well-being.

Like all other displays, the selected results can also be exported as open data (see below).

Image Gallery

The NOW portal presently has about 2700 images on site organized by object type, neighborhood, and historical. These images are contextually available in multiple locations throughout the site.

The History topic section also matches these images to historical neighborhood narratives.

Example of a NOW Image Gallery

Example conStruct Tool: structOntology

conStruct Tools

A series of twenty or so back office tools are available to City of Winnipeg staff to grow, manage and otherwise maintain the portal. Some of these tools are exposed in read-only form to the general public (see Geeky Tools next).

The example at left is the structOntology tool for managing the various ontologies on the site.

Geeky Tools

As a means to show what happens behind the scenes, the Geeky Tools section presents a number of the back office tools in read-only form. These are also good ways to see the semantic technologies in action.

The Geeky Tools section provides access to Search, Browse, Ontology, and Export (see next) tools.

NOW's Geeky Tools

The NOW Export Function

Open Data Exports

On virtually any display or after any filter selection, there is an “export” button that allows the active data to be exported in a variety of formats. Under Geeky Tools it is also possible to export whole datasets or slices of them. Some of the key formats include:

Some of these are serializations that are not standard ones for RDF, but follow a notation that retains the unique RDF aspects.

Some Early Lessons

Though the technical aspects of the NOW site have been ready for quite some time, with limited staff and budget it took City staff some time to convert all of its starting datasets and to learn how to develop and manage the site on its own. As a result, some of the design decisions made a couple of years back now appear a bit dated.

For example, the host content management system is Drupal 6, though Drupal 8 is getting close to its own release. Similarly, some of the display widgets are based on Flash, which Adobe announced last year it will continue to maintain, but will no longer develop. In the two years since design decisions were originally made, the importance of mobile apps and smartphones and tablets has also grown tremendously in importance.

These kinds of upgrades are a constant in the technology world, and apply to NOW as well. Fortunately, the underlying basis of the entire portal in its data and stack were architected to enable eventual upgrades.

Another key aspect of the site will be the degree to which external parties contribute additional data. It would be nice, for example, to see the site incorporate events announcements and non-City information on commercial and non-profit services and facilities.

Conclusion

Structured Dynamics is proud about the suitability of our OSF technology stack and is impressed with all the data that is being exposed. Our informal surveys suggest this is the largest open data portal by a major city worldwide to be released to date. It is certainly the first to be powered exclusively by semantic technologies.

Yet, despite those impressive claims, we submit that the real achievement of this project is something different. The fact that this entire portal is fully maintained and operated by the City’s own internal IT staff is a game changer. The IT staff of the City of Winnipeg had no prior internal semantic Web knowledge, nor any knowledge in RDF, OWL or any other underlying technologies used by the portal. What they had is a vision of their project and what they wanted. They placed significant faith and made a commitment to master the OSF technology stack, and the underlying semantic Web concepts and principles to make their vision a reality. Much of SD’s 430+ documents on the OSF TechWiki are a result of this collaborative technology transfer between us and the City.

We are truly grateful that the City of Winnipeg has taken open source and open data quite seriously. In our partnership wth them they have been extremely supportive of what we have done to progress the technology, release it as open source, and then to document our lessons and experiences for other parties to utilize as documented on the TechWiki. The City of Winnipeg truly shows enlightened government at its best. Thank you, especially to our project managers, Kelly Goldstrand and Don Conolly.

Structured Dynamics has long stated its philosophy as, “We are successful when we are no longer needed. We’re extremely pleased and proud that the NOW portal and the City of Winnipeg show this objective is within realistic reach.

Posted:January 10, 2013

Marko Rodriguez has been one of the most exciting voices in graph applications and theory with relevance to the semantic Web over the past five years. He is personally innovating an entire ecosystem of graph systems and tools for which all of us should be aware.

The other thing about Marko I like is that he puts thoughtful attention and graphics to all of his posts. (He also likes logos and whimsical product names.) The result is that, when he presents a new post, it is more often than not a gem.

Today Marko posted what I think is a keeper on graph-related stuff:

On Graph Computing

I personally think it is a nice complement to my own Age of the Graph of a few months back. In any event, put Marko’s blog in your feed reader. He is one of the go-to individuals in this area.

Posted by AI3's author, Mike Bergman Posted on January 10, 2013 at 8:09 pm in Uncategorized | Comments (0)
The URI link reference to this post is: http://www.mkbergman.com/1041/the-graph-cometh/
The URI to trackback this post is: http://www.mkbergman.com/1041/the-graph-cometh/trackback/
Posted:November 16, 2012

Friday     Brown Bag LunchThe New Paradigm of ‘Substantive Marketing’ for Innovative IT

This decade has clearly marked a sea change in the move of enterprise software from proprietary to open source, as I have recently discussed [1]. It is instructive that only a mere six years ago I was in heated fights with my then Board about open source; today, that seems so quaint and dated.World's Tallest Flagpole; see ref [9]

Also during this period many have noted how open source has changed the capital required to begin a new software startup [2]. Open source both provides the tooling and the components for cobbling together specialty apps and extensions. Six and seven and even eight figure startup costs common just a decade ago have now dropped to four or five figures. When we see the explosion of hundreds of thousands of smartphone apps we are seeing the glowing residue of these additional sea changes. Dropping startup costs by one to three orders of magnitude is truly democratizing innovation.

But something else has been going on that is changing the face of enterprise software (besides consolidation, another factor I also recently commented on). And that factor is “marketing”. Much less commentary is made about this change, but it, too, is greatly lowering costs and fundamentally changing market penetration strategies. That topic — and my personal experience with it — is the focus of this article.

Friday      Brown Bag Lunch This Friday brown bag leftover was first placed into the AI3 refrigerator on August 15, 2011. This reprise is unchanged from its original posting and still describes how Structured Dynamics undertakes its marketing.

The Obsolete Recent Past

Besides the few remaining big providers of enterprise software — like IBM, Oracle, HP, SAP — most vendors have totally remade their sales practices of just a few years ago. Large sales forces with big commissions and a year to two year sales cycles can no longer be justified when software license fees and the percentage maintenance annuities that flow from them are dropping rapidly. Today’s mantras are doing more with less and doing it faster, hardly consistent with the traditional enterprise software model. Sure, big enterprises, especially big government and big business, have large sunk costs in legacy systems that will continue to be milked by existing vendors. But the flow is constricting with longer-term trends clear to see. The old enterprise software model is obsolete.

Even if it were not dying, it is hard to square huge investments in sales and marketing when product development has become inexpensive and agile. The proliferation of three-letter marketing acronyms for branding “new” product areas and standard formulas for product hype of just a few years ago also feels old and dated. Cozy relationships with conventional trade press pundits and market analysts seem to be diminishing in importance, possibly because the authoritativeness of their influence is also diminishing. It is harder to justify market firm subscription costs when priority budget items are being cut and new information outlets have emerged.

In response to this, many developers have forsaken the enterprise market for the consumer one. Indeed enterprises themselves are looking more and more to the consumer sector and commodity apps for innovation and answers. But, still, problems unique to enterprises remain and how to effectively reach them in this brave new world is today’s marketing problem for enterprise software vendors.

Most entities today, when opining about these challenges, tend to emphasize the need for “laser focus” and “rifle-shot” targeting of prospects. The advice takes the form of: 1) emphasize well-defined verticals; 2) know your market well; and 3) target and go after your likely prospects. Prospect data mining and targeted ad analysis are the proferred elixirs.

But, there is little evidence such refined methods for prospect identification and targeting are really working. Like politicians doing focus groups and opinion polling to capture the desired “message” of their potential electorates, these are all still “push” models of marketing. Yet we are swamped with pushed messages and marketing everywhere we turn. The model is failing.

Besides message overload, there are two issues with laser targeting. First, despite all that we try to know about ready buyers (for enterprise software), we really don’t know if any particular individual is truly needful, in a position to buy, has the authority to buy, or is the right advocate to make the internal sell. Second, though the idea of “laser” carries with it the image of focus and not flailing, it is in fact expensive to identify the targets and send a focused message their way. Because of these issues, decay rates for laser prospects throughout conventional sales pipelines continue to rise.

A New Marketing ParadigmNew Paradigm Roadsign

There has always been the phenomenon of the “fish jumping into the boat“; that is, the unanticipated inbound inquiry from a previously unknown prospect leading to a surprisingly swift sale. But we have seen this phenomenon increase markedly in recent years. Structured Dynamics‘ current customer base — including recurring customers — comes almost exclusively from this source. As we have noted this trend in comparison with more targeted outreach, we have spent much time trying to understand why it is occurring and how we can leverage what Peter Drucker called the “unexpected success” [3].

What we are seeing, I believe, is a shift from sales to marketing, and within marketing from direct or outbound marketing to a new paradigm of marketing. Others have likened this to inbound marketing [4] or content marketing [5] or permission marketing [6]. What we are seeing at Structured Dynamics bears many resemblances to parts of what is claimed for these other approaches, but not all. And, it is also true that what we are seeing may pertain mostly to innovative IT for emerging enterprise markets, and not a generalized paradigm suitable to other products or markets.

For lack of a better term, what we are seeing we can term “substantive marketing”. By this we mean offering valuable content and solutions-oriented systems for free and without restriction. This shares aspects with content marketing. Then, in keeping with the trend for buyers doing their own research and analysis to fulfill their own needs, similar to the premises of inbound or permission marketing, potential consumers can make their own judgments as to relevance and value of our offerings.

Sometimes, of course, some prospects find our approaches and solutions lacking. Sometimes, they may grab what we have offered for free and use them on their own without compensation to us. But where the match is right — and we need to be honest with both ourselves and the customer when it is not — we can better spend the customer’s limited time and resources to tailor our generic solutions to their specific needs. In doing so, we offer higher value (tailored services) while learning better about another spectrum of consumer need that can virtuously enhance our substantive offerings for the next prospect.

So, let’s decompose these components further to see what they can tell us about this new practice of substantive marketing and how to use it as an engine for moving forward.

Substantive Marketing

The Virtuous Cycle Begins with Substantive Solutions

The premise of substantive marketing is to offer square-deal value to the marketplace in the form of solutions-based content. Like content marketing that offers “the creation or sharing of content for the purpose of engaging current and potential consumer bases” [5], substantive marketing goes even further. The whole basis and premise of the approach is to provide substantive content, in one of more of these areas, preferably all:

  • Knowledge — this substantive area includes papers, commentary, survey results or listings of tools and references useful to the target market
  • Analysis — this content area includes unique analysis of market trends, data, technologies or reviews that pertain to the target market
  • Code — this area relates to the provision of open source code and tools, preferably under licenses that allow users to use the software without restriction (two examples are the Apache 2 license and the MIT license)
  • Documentation — a critical substantive area is the documentation in how to install, use, modify or customize these tools, including a prejudice to APIs and tutorial information
  • Methodologies, workflows and best practices — it is important to also discuss how to properly operate and utilize these tools and information. Taking care to document lessons learned and best practices also helps the user community avoid common mistakes and to speed adoption and utility, and
  • Demos — this area involves setting up (and sharing code and procedures for same) demos that show how the code and its methods actually work. Demos also become first use cases to aid the new user in learning and setting up the code bases.

Further, this substantive content is offered without strings, restrictions or customer fill-in forms. The content is not a come on or a teaser. We are not trying to gather leads or prospect names, because we have no intent to dun them with emails or follow-ups.

This substantive content is as complete as can be to enable new users to adopt the information and tools in their current state without further assistance. (In some cases, the information also educates the marketplace in order to prepare future customers for adoption.) Most importantly, this substantive content is offered for free, either open source (for code) or creative commons for documentation and other content. In return, it is fair to request — and we do — attribution when this material is used.

We have previously termed this complete panoply of substantive content a total open solution [7]. Some might find the provision of such robust information crazy: How can we give away the store of our proprietary knowledge and systems?

But we find this kind of thinking old school. In an open source world where so much information is now available online, with a bit of effort customers can find this information anyway. Rather, our mindset is that customers do not want to pay again for what has already been done, but are willing to pay for what can be done with that knowledge for their own specific problems. Offering the complete storehouse of our knowledge in fact signals our interest in only charging the customer for new answers, new value or new formulations. The customers we like to work with feel they are getting an honest, square deal.

Flagpole Venues Help Increase Awareness

Consider your substantive content to be your flag, a unique banner for conveying and packaging your specific brand. It is thus important to find appropriate flagpoles — in the virtual territories that your customers visit — for raising this content high for them to see. Since the role of these flagpoles is to create awareness in potential prospects — who you do not likely know individually or even by group in advance — it makes sense to raise your offerings up on many flagpoles and on the highest flagpoles. Visibility is the object of the approach.

This approach is distinctly not leafletting or cramming links or emails into as many spaces as possible. The idea of substantive marketing is to fly valuable content high enough that desirous potential customers can discover and then inspect the information on their own, and only if they so choose. In this regard, substantive marketing resembles permission marketing [6].

Being visible helps ensure that the needful, questing prospect that you would never have been able to target on your own is able to see and be aware of your offerings. And, since they are seeking information and answers, your collateral needs to be of a similar nature. Solutions and substance are what they are seeking; what you have run up the flagpole should respond to that.

The mindset here is to respect your prospective customers and to allow them to chose to receive and inspect your offerings, but only if they so choose. If flown in the right venues with the right visibility, customers will see your flags and inspect them if they meet their requirements.

Some of the venues at which you can raise your flags include:

  • Blogs — this venue is especially helpful, since you have complete control over content, message, voice and packaging
  • Social networks — the value of social networks is now accepted, and should be a core component of any visibility strategy. However, it is also important to make sure that your contributions are driven by substance and value and do not become part of the cacophonous background noise
  • Vertical media — there are always existing outlets well-read and -respected by your customer propects. Establishing relationships and value with these third-party outlets can extend your reach
  • Web sites — this venue includes your standard Web sites, of course. But, you should also consider setting up specific project-related sites or sites dedicated to documentation (c.f., our TechWiki site of 300+ technical articles) or to methodologies (the excellent MIKE2.0 site is one great example) or to other ways by which particular content (such as tools with the Sweet Tools site) can raise another flag
  • User forums — user discussion groups and forums also become their own attractants for like-interested prospects, and
  • Conferences and tradeshows — while potentially valuable, presence at conferences and tradeshows must be carefully evaluated. Since participation and opportunity costs are high, the venues should be clearly relevant to your market space with likely decision makers in attendance.

The observant reader will have already concluded that each of these venues develops slowly, and therefore raising visibility is generally a slow-and-steady game that requires patience. Start-up vendors backed by venture firms or those looking for quick visibility and cashout will not find this approach suitable. On the other hand, customer prospects looking for answers and self-sustaining solutions are not much interested in flash in the pan vendors, either.

A Model Responsive to the Changing Nature of Customer Prospects

The real drivers for this changing paradigm come from customer prospects. Sophisticated buyers of enterprise IT and instrumental change agents within organizations share most if not all of these characteristics:

  • They are inundated with marketing messages and jaded about hype and “pushed” messages
  • They are generally knowledgeable about their needs and problem spaces and about approximate technologies. They are eager and desirous of learning independently and know that their recommendations affect their personal reputations and standing within their enterprises
  • With the many volatile external and internal changes, including staff reductions and fluid assignments, leadership for new technology adoption can come from many different and unknown corners of the organization; it is extremely difficult to identify and target prospects
  • The economic and competitive environment places a premium on affordability and low-risk evaluations of new technologies
  • Lock-ins of any kind — be it to specific vendors or technologies — are understood as inherently risky. This understanding is raising the importance of open and standards-based approaches
  • Being the subject of a pushy sales effort is distasteful and a negative to an eventual sale. Education and learning, however, is respected
  • Because of all that is at stake, honesty with no bullshit is highly appreciated. If you as a vendor do not offer an appropriate solution or have fulfillment weaknesses, tell the prospect so. Further, tell them who can supply the solution. One never knows when and where the next problem may arise, and providing trustworthy advice can lead to later engagements.

More often than not we find our customers to have already installed and used our existing substantive materials for some time before they approach us about further work. They appreciate the tutorial information and have taught themselves much in advance. By the time we engage, both parties are able to cost-effectively focus on what is truly missing and needed and to deliver those answers in a quick way. Re-engagements tend to occur when a next set of gaps or challenges arise.

Though it may sound trite or even unbelievable to those who have not yet experienced such a relationship, the square deal value offered by substantive marketing can really lead to true partnerships and trust between vendor and customer. We experience it daily with our customers, and vice versa. We also think this is the adaptive approach that our new environment demands.

The Free Path to Open Source and Solutions

Once prospects learn of our substantive offerings, many may decide independently that what we have is not suitable. Others may simply download and use the information on their own, for which we often never know let alone receive revenue. We are completely fine with this, as shown for three different cases.

First, some of these prospects need no more than what we already have. This increases our user base, increases our visibility and often results in contributions to our forums and documentation.

Then, some of these prospects come to learn they need or want more than what our current offerings provide, leading to two possible forks. In one fork, the second case, they may have sufficient skills internally or with other suppliers to extend the system on their own. Some of this flows back to an improved code base or improved installation or documentation bases.

In the other fork, the third case, they may decide to engage us in tailoring a solution for them. That case is the only one of the three that leads to a direct revenue path.

In all three cases we win, and the customer wins. Maybe enterprise software vendors of decades past rue this reality of lower margins and shared benefits; we agree that the absolute profit potential of substantive marketing is much less. But we gladly accept the more enjoyable work and steady revenue relationships resulting from these changes. We are not engaged in some pollyann-ish altruism here, but in a steely-eyed honest brokering that best serves our own self-interest (and fairly that of the customer, as well).

A Square Deal Baseline for Tailored Services

Great IT product does not come from idle musings or dreamed up functionality. It comes solely and directly from solving customer problems. Only via customers can software be refined and made more broadly usable.

A slipstream of those who have previously become aware and tested our offerings will choose to engage our services. This generally takes the form of an inbound call, where the prospect not only qualifies itself, but also establishes the terms and conditions for the sale. They have chosen to select us; they are fish that have jumped into the boat.

To again quote Peter Drucker, “. . . the aim of marketing is to make selling superfluous. The aim of marketing is to know and understand the customer so well that the product or service fits him and sells itself. Ideally, marketing should result in a customer who is ready to buy. All that should be needed then is to make the product or service available . . .” [8]. This is precisely what I meant earlier about the shift in emphasis from sales to marketing.

Even at this point there may be mismatches in needs and our skills and availabilities. If such is the case, we do not hesitate to say so, and attempt to point the prospect in another direction (from which we also gain invaluable market knowledge). If there is indeed a match, we then proceed to try to find common ground on schedule and budget.

Paradoxically, this square deal and honesty about the readiness and weaknesses of our offerings often leads to forgiveness from our customers. For example, for some time we have lacked automated installation scripts that would make it easier for prospects to install our open semantic framework. But, because of compensating value in other areas, such gaps can be overlooked and tackled later on (indeed, as a current customer is now funding). By not pretending to be everything to everyone, we can offer what we do have without embarrassment and get on with the job of solving problems.

For larger potential engagements, we typically suggest a fixed price initial effort to develop an implementation plan. The interviews and research to support this typical 4- to 6-weeks effort (generally in the $5 K to $10 K range, depending) then result in a detailed fulfillment proposal, with firm tasks, budget and schedule, specific to that customer’s requirements. Just as we respect our prospects’ time and budget, we expect the same and do not conduct these detailed plans without compensation. With respect to fulfillment contracts, we cap contract amount and limit milestone payments to pre-set percentages or time expended, whichever is lower.

This approach ensures we understand the customer’s needs and have budgeted and tasked accordingly. Capped contracts also put the onus on us the contractor to understand our own effort and tasking structures and realities, which leads to better future estimating. For the customer, this approach caps risk and potential exposure, and ensures milestones are being met no matter the time expenditures by us, the contractor. This approach extends our square-deal basis to also embrace risks and payments.

New (and Open Source) Developments Fuel the Substance Pipeline

Thus, when customers engage us, they spend almost solely on new functionality specifically tailored to their needs. In doing so, we suggest they agree to release the new developments they fund as open source. We argue — and customers predominantly agree — that they are already benefitting from lower overall costs because other customers have funded sharable, open source before them. We point out that the new customers that follow them will also be independently creating new functionality, to which they will also later benefit.

(This argument does not apply to specific customer data or ontologies, which are naturally proprietary to the customer. Also, if the customer wants to retain intellectual ownership of extensions, we charge higher development fees.)

Once these new developments are completed, they are fed back into a new baseline of valuable content and code. From this new baseline the cycle of substantive marketing can be augmented anew and perpetuated.

Three Guidelines to Leverage Substantive Marketing

All of these points can really be boiled down to three guidelines for how to make substantive marketing effective:

  • First, whatever your domain or market, provide useful and substantive content. The content you offer is indeed your marketing collateral. Prospective customers can gauge from it directly whether it meets their needs, appears sound and workable, and has value. If you have little of substance to offer, this paradigm is not for you
  • Second, plant many flagpoles and raise your flags high in territories your market prospects are likely to visit. This is a process that requires thoughtfulness and patience. Thoughtfulness, because that is how you determine where to plant your flags. If you yourself are a consumer of what you offer, it is easier to find those venues. And patience, because it takes time to stack valuable content upon valuable content in order to raise visibility
  • And, third, be honest and respectful. Help your prospect work within available budget to achieve the most possible at lowest risk. And help them find others, if need be, who might be better able than you to truly solve their problems.

What we are finding — as we continue to refine our understanding of this new paradigm — is that through substantive marketing the fish are finding us and they sometimes jump into the boat. We like our enterprise customers to pre-qualify themselves and already be “sold” once they knock on the door. One never knows when that phone might ring or the email might come in. But when it does, it often results in a collaborative customer as a partner who is a joy to work with to solve exciting new problems.


[1] M.K. Bergman, 2011. “Declining IT Innovation in the Enterprise,” in AI3:::Adaptive Innovation blog, January 17, 2011. See http://www.mkbergman.com/940/declining-it-innovation-in-the-enterprise/.
[2] Paul Graham has been the most prominent observer of this scene; see P. Graham, 2008. “Why There Aren’t Any More Googles,” April 2008 (see http://www.paulgraham.com/googles.html) and subsequent articles.
[3] See esp. Peter F. Drucker, 1985. Innovation and Entrepreneurialship: Practice and Principals, Harper & Row, New York, NY, 277 pp.
[4] Inbound marketing is a marketing strategy that focuses on getting found by customers. According to David Meerman Scott, inbound marketers “earn their way in” (via publishing helpful information on a blog etc.) in contrast to outbound marketing where they used to have to “buy, beg, or bug their way in” (via paid advertisements, issuing press releases in the hope they get picked up by the trade press, or paying commissioned sales people, respectively). Brian Halligan, cofounder and CEO of HubSpot, claims he first coined the term of inbound marketing.
[5] Content marketing is an umbrella term encompassing all marketing formats that involve the creation or sharing of content for the purpose of engaging current and potential consumer bases. In contrast to traditional marketing methods that aim to increase sales or awareness through interruption techniques, content marketing subscribes to the notion that delivering high-quality, relevant and valuable information to prospects and customers drives profitable consumer action. See also Holger Shulze, 2011. B2B Content Marketing Trends slideshow, see http://www.slideshare.net/hschulze/b2b-content-marketing-report.
[6] Seth Godin coined the term permission marketing wherein marketers obtain permission before advancing to the next step in the purchasing process. It is mostly used by online marketers, notably email marketers and search marketers, as well as certain direct marketers who send a catalog in response to a request. Godin contrasts this approach to traditional “interruption marketing” where messages are sent without prior permission.
[7] See the three-part series, M.K. Bergman, 2010. “Listening to the Enterprise: Total Open Solutions,” “Part 1,” “Part 2” and “Part 3,” AI3:::Adaptive Information blog, May 12 – 31, 2010.
[8] Peter F. Drucker, 1974. Management: Tasks, Responsibilities, Practices. New York, NY: Harper & Row. pp. 864. ISBN 0-06-011092-9.
[9] The intro photo is of the world’s tallest flagpole (at 165 m), in Dushanbe, Tajikistan. The photo is courtesy of CentralAsiaOnline.com.

Posted by AI3's author, Mike Bergman Posted on November 16, 2012 at 9:09 am in Uncategorized | Comments (0)
The URI link reference to this post is: http://www.mkbergman.com/1026/brown-bag-lunch-of-flagpoles-and-fishes/
The URI to trackback this post is: http://www.mkbergman.com/1026/brown-bag-lunch-of-flagpoles-and-fishes/trackback/
Posted:February 27, 2012

Open Semantic FrameworkOntology-driven Application Meshes Structured Data with Public APIs

Locational information — points of interest/POIs, paths/routes/polylines, or polygons/regions — is common to many physical things in our real world. Because of its pervasiveness, it is important to have flexible and powerful display widgets that can respond to geo-locational data. We have been working for some time to extend our family of semantic components [1] within the open semantic framework (OSF) [2] to encompass just such capabilities. Structured Dynamics is thus pleased to announce that we have now added the sWebMap component, which marries the entire suite of Google Map API capabilities to the structured data management arising from the structWSF Web services framework [3] at the core of OSF.

The sWebMap component is fully in keeping with our design premise of ontology-driven applications, or ODapps [4]. The sWebMap component can itself be embedded in flexible layouts — using Drupal in our examples below — and can be very flexibly themed and configured. sWebMap we believe will rapidly move to the head of the class as the newest member of Structured Dynamics’ open source semantic components.

The absolutely cool thing about sWebMap is it just works. All one needs to do is relate it to a geo-enabled Search structWSF endpoint, and then all of the structured data with geo-locational attributes and its facets and structure becomes automagically available to the mapping widget. From there you can flexible map, display, configure, filter, select and keep those selections persistent and share with others. As new structured data is added to your system, that data too becomes automatically available.

Key Further Links

Though screen shots in the operation of this component are provided below, here are some further links to learn more:

sWebMap Overview

There is considerable functionality in the sWebMap widget, not all immediately obvious when you first view it.

NOTE: a wide variety of configuration options — icons and colors — matched with the specific data and base tiling maps appropriate to a given installation may produce maps of significantly different aspect from the screenshots presented below. Click on any screenshot to get a full-size view.

Here is an example for sWebMap when it first comes up, using an example for the “Beaumont neighborhood”:

It is possible to set pre-selected items for any map display. That was done in this case, which shows the pre-selected items and region highlighted on the map and in the records listing (lower left below map).

The basic layout of the map has its main search options at the top, followed by the map itself and then two panels underneath:

The left-hand panel underneath the map presents the results listing. The right-hand panel presents the various filter options by which these results are generated. The filter options consist of:

  • Sources – the datasets available to the instance
  • Kinds – the kinds or types of data (owl:Classes or rdf:types) contained within those datasets, and
  • Attributes – the specific attributes and their values for those kinds or sources.

As selections are made in sources or kinds, the subsequent choices narrow.

The layout below shows the key controls available on the sWebMap:

You can go directly to an affiliated page by clicking the upper right icon. This area often shows a help button or other guide. The search box below that enables you to search for any available data in the system. If there is information that can be mapped AND which occurs within the viewport of the current map size, those results will appear as one of three geographic feature types on the map:

  • Markers, which can be configured with differing icons for specific types or kinds of data
  • Polylines, such as highways or bus routes, or
  • Polygons, which enclose specific regions on the map through a series of drawn points in a closed area.

At the map’s right is the standard map control that allows you to scroll the map area or zoom. Like regular Google maps, you can zoom (+ or – keys, or middle wheel on mouse) or navigate (arrow direction keys, or left mouse down and move) the map.

Current records are shown below the map. Specific records may be selected with its checkbox; this keeps them persistent on the map and in the record listing no matter what the active filter conditions may be. (You may also see a little drawing icon [Update record], which presents an attribute report — similar to a Wikipedia ‘infobox‘ — for the current record). You can see in this case that the selected record also corresponds to a region (polygon) shape on the map.

sWebMap Views, Layers and Layouts

In the map area itself, it is possible to also get different map views by selecting one of the upper right choices. In this case, we can see a satellite view (or “layer”):

Or, we can choose to see a terrain layer:

Or there may optionally be other layers or views available in this same section.

Another option that appears on the map is the ability to get a street view of the map. That is done by grabbing the person icon at the map left and dragging it to where you are interested within the map viewport. That also causes the street portion to be highlighted, with street view photos displayed (if they exist for that location):

By clicking the person icon again, you then shift into walking view:

Via the mouse, you can now navigate up and down these streets and change perspective to get a visual feel for the area.

Multi-map View

Another option you may invoke is the multi-map view of the sWebMap. In this case, the map viewing area expands to include three sub-maps under the main map area. Each sub-map is color-coded and shown as a rectangle on the main map. (This particular example is displaying assessment parcels for the sample instance.) These rectangles can be moved on the main map, in which case their sub-map displays also move:

You must re-size using the sub-map (which then causes the rectangle size to change on the main map). You may also pan the sub-maps (which then causes the rectangle to move on the main map). The results list at the lower left is determined by which of the three sub-maps is selected (as indicated by the heavier bottom border).

Searching and Filter Selections

There are two ways to get filter selection details for your current map: Show All Records or Search.

NOTE: for all data and attributes as described below, only what is visible on the current map view is shown under counts or records. Counts and records change as you move the map around.

In the first case, we pick the Show All Records option at the bottom of the map view, which then brings up the detailed filter selections in the lower-right panel:

Here are some tips for using the left-hand records listing:

  • If there are more than 10 records, pagination appears at the bottom of the listing
  • Each record is denoted by an icon for the kind of thing it is (bus stops v schools v golf courses, for example)
  • If we mouse over a given record in the listing, its marker icon on the map bounces to show where it resides
  • To the right of each record listing, the checkbox indicates whether you want the record to be maintained persistently. If you check it, the icon on the map changes color, the record is promoted to the top of the list where it becomes sticky and is given an alphabetic sequence. Unchecking this box undoes all of these changes
  • To the right of each record listing is also the view record [View raw attributes for the record] icon; clicking it shows the raw attribute data for that record.

The records that actually appear on this listing are based on the records scope or Search (see below) conditions, as altered by the filter settings on the right-hand listing under the sWebMap. For example, if we now remove the neighborhood record as being persistent and Show included records we now get items across the entire map viewport:

Search works in a similar fashion, in that it invokes the filter display with the same left- and right-hand listings appear under the sWebMap, only now only for those records that met the search conditions. (The allowable search syntax is that for Lucene.) Here is the result of a search, in this case for “school”:

As shown above, the right-hand panel is split into three sections: Sources (or datasets), Kinds (that is, similar types of things, such as bus stops v schools v golf courses), and Attributes (that is, characteristics for these various types of things). All selection possibilities are supported by auto-select.

Sources and Kinds are selected via checkbox. (The default state when none are checked is to show all.) As more of these items are selected, the records listing in the left-hand panel gets smaller. Also, the counts of available items [as shown by the (XX) number at the end of each item] are also changed as filters are added or subtracted by adding or removing checkboxes.

Applying filters to Attributes works a little differently. Attributes filters are selected by selecting the magnifier plus [Filter by attribute] icon, which then brings up a filter selection at the top of the listing underneath the Attributes header.

The specific values and their counts (for the current selection population) is then shown; you may pick one or more items. Once done, you may pick another attribute to add to the filter list, and continue the filtering process.

Saving and Sharing Your Filters

sWebMaps have a useful way to save and share their active filter selections. At any point as you work with a sWebMap, you can save all of its current settings and configurations — viewport area, filter selections, and persistent records — via some simple steps.

You initiate this functionality by choosing the save button at the upper right of the map panel:

When that option is invoked, it brings up a dialog where you are able to name the current session, and provide whatever explanatory notes you think might be helpful.

NOTE: the naming and access to these saved sessions is local to your own use only, unless you choose to share the session with others; see below.

Once you have a saved session, you will then see a new control at the upper right of your map panel. This control is how you load any of your previously saved sessions:

Further, once you load a session, still further options are presented to you that enables you to either delete or share that session:

If you choose to share a session, a shortened URI is generated automatically for you:

If you then provide that URI link to another user, that user can then click on that link and see the map in the exact same state — viewport area, filter selections, and persistent records — as you initially saved. If the recipient then saves this session, it will now also be available persistently for his or her local use and changes.

NOTE: two users may interactively work together by sharing, saving and then modifying maps that they share again with their collaborator.

[1] A semantic components is a JavaScript or Flex component or widget that takes record descriptions and irXML schema as input, and then outputs interactive visualizations of those records. Depending on the logic described in the input schema and the input record descriptions, the semantic component may behave differently or provide presentation options to users. Each semantic component delivers a very focused set of functionality or visualization. Multiple components may be combined on the same canvas for more complicated displays and controls. At present, there are 12 individual semantic widgets in the available open source suite; see further the sComponent category on the TechWiki. By convention, all of the individual widgets in the semantic component suite are named with an ‘s’ prefix; hence, sWebMap.
[2] The open semantic framework, or OSF, is a combination of a layered architecture and an open-source, modular software stack. The stack combines many leading third-party software packages — such as Drupal for content management, Virtuoso for (RDF) triple storage, Solr for full-text indexing, GATE for tagging and natural language processing, the OWL2 API for ontology management and support, and others. These third-party tools are extended with open source developments from Structured Dynamics including structWSF (a RESTful Web services layer of about a dozen modules for interacting with the underlying data and data engines), conStruct (a series of Drupal modules that tie Drupal to the structWSF Web services layer), semantic components (data display and manipulation widgets, mostly based either in Flash or JavaScript, for working with the semantic data), various parsers and standard data exchange formats and schema to facilitate information flow amongst these options, and a ontologies layer, that consists of both domain ontologies that capture the coherent concepts and relationships of the current problem space and of administrative ontologies that govern how the other software layers interact with this structure.
[3] structWSF is a platform-independent Web services framework for accessing and exposing structured RDF (Resource Description Framework) data. Its central organizing perspective is that of the dataset. These datasets contain instance records, with the structural relationships amongst the data and their attributes and concepts defined via ontologies (schema with accompanying vocabularies). The structWSF middleware framework is generally RESTful in design and is based on HTTP and Web protocols and open standards. The current structWSF framework has a baseline set of more than 20 Web services in CRUD, browse, search, tagging, ontology management, and export and import.
[4] For the most comprehensive discussion of ODapps, see M. K. Bergman, 2011. ” Ontology-Driven Apps Using Generic Applications,” posted on the AI3:::Adaptive Information blog, March 7, 2011. You may also search on that blog for ‘ODapps‘ to see related content.

Posted by AI3's author, Mike Bergman Posted on February 27, 2012 at 10:26 am in Uncategorized | Comments (0)
The URI link reference to this post is: http://www.mkbergman.com/997/osf-gains-powerful-new-mapping-component/
The URI to trackback this post is: http://www.mkbergman.com/997/osf-gains-powerful-new-mapping-component/trackback/