Posted:April 4, 2012

Tractricious Sculpture at Fermilab; picture by Mike KappelAdaptive Information is a Hammer, but Genes are Not a Nail

Since Richard Dawkins first put forward the idea of the “meme” in his book The Selfish Gene some 35 years ago [1], the premise has struck in my craw. I, like Dawkins, was trained as an evolutionary biologist. I understand the idea of the gene and its essential role as a vehicle for organic evolution. And, all of us clearly understand that “ideas” themselves have a certain competitive and adaptive nature. Some go viral; some run like wildfire and take prominence; and some go nowhere or fall on deaf ears. Culture and human communications and ideas play complementary — perhaps even dominant — roles in comparison to the biological information contained within DNA (genes).

I think there are two bases for why the “meme” idea sticks in my craw. The first harkens back to Dawkins. In formulating the concept of the “meme”, Dawkins falls into the trap of many professionals, what the French call déformation professionnelle. This is the idea of professionals framing problems from the confines of their own points of view. This is also known as the Law of the Instrument, or (Abraham) Maslow‘s hammer, or what all of us know colloquially as “if all you have is a hammer, everything looks like a nail [2]. Human or cultural information is not genetics.

The second — and more fundamental — basis for why this idea sticks in my craw is its mis-characterization of what is adaptive information, the title and theme of this blog. Sure, adaptive information can be found in the types of information structures at the basis of organic life and organic evolution. But, adaptive information is much, much more. Adaptive information is any structure that provides arrangements of energy and matter that maximizes entropy production. In inanimate terms, such structures include chemical chirality and proteins. It includes the bases for organic life, inheritance and organic evolution. For some life forms, it might include communications such as pheromones or bird or whale songs or the primitive use of tools or communicated behaviors such as nest building. For humans with their unique abilities to manipulate and communicate symbols, adaptive information embraces such structures as languages, books and technology artifacts. These structures don’t look or act like genes and are not replicators in any fashion of the term. To hammer them as “memes” significantly distorts their fundamental nature as information structures and glosses over what factors might — or might not — make them adaptive.

I have been thinking of these concepts much over the past few decades. Recently, though, there has been a spate of the “meme” term, particularly on the semantic Web mailing lists to which I subscribe. This spewing has caused me to outline some basic ideas about what I find so problematic in the use of the “meme” concept.

A Brief Disquisition on Memes

As defined by Dawkins and expanded upon by others, a “meme” is an idea, behavior or style that spreads from person to person within a culture. It is proposed as being able to be transmitted through writing, speech, gestures or rituals. Dawkins specifically called melodies, catch-phrases, fashion and the technology of building arches as examples of memes. A meme is postulated as a cultural analogue to genes in that they are assumed to be able to self-replicate, mutate or respond to selective pressures. Thus, as proposed, memes may evolve by natural selection in a manner analogous to that of biological evolution.

However, unlike a gene, a structure corresponding to a “meme” has never been discovered or observed. There is no evidence for it as a unit of replication, or indeed as any kind of coherent unit at all. In its sloppy use, it is hard to see how “meme” differs in its scope from concepts, ideas or any form of cultural information or transmission, yet it is imbued with properties analogous to animate evolution for which there is not a shred of empirical evidence.

One might say, so what, the idea of a “meme” is merely a metaphor, what is the harm? Well, the harm comes about when it is taken seriously as a means of explaining human behavior and cultural changes, a field of study called memetics. It becomes a pseudo-scientific term that sets a boundary condition for understanding the nature of information and what makes it adaptive or not [3]. Mechanisms and structures appropriate to animate life are not universal information structures, they are simply the structures that have evolved in the organic realm. In the human realm of signs and symbols and digital information and media, information is the universal, not the genetic structure of organic evolution.

The noted evolutionary geneticist, R.C. Lewontin, one of my key influences as a student, has also been harshly critical of the idea of memetics [4]:

 “The selectionist paradigm requires the reduction of society and culture to inheritance systems that consist of randomly varying, individual units, some of which are selected, and some not; and with society and culture thus reduced to inheritance systems, history can be reduced to ‘evolution.’ . . . we conclude that while historical phenomena can always be modeled selectionistically, selectionist explanations do not work, nor do they contribute anything new except a misleading vocabulary that anesthetizes history.”

Consistent with my recent writings about Charles S. Peirce [5], many logicians and semiotic theorists are also critical of the idea of “memes”, but on different grounds. The criticism here is that “memes” distort Peirce’s ideas about signs and the reification of signs and symbols via a triadic nature. Notable in this camp is Terrence Deacon [6].

Information is a First Principle

It is not surprising that the concept of “memes” arose in the first place. It is understandable to seek universal principles consistent with natural laws and observations. The mechanism of natural evolution works on the information embodied in DNA, so why not look to genes as some form of universal model?

The problem here, I think, was to confuse mechanisms with first principles. Genes are a mechanism — a “structure” if you will — that along with other forms of natural selection such as the entire organism and even kin selection [7], have evolved as means of adaptation in the animate world. But the fundamental thing to be looked for here is the idea of information, not the mechanism of genes and how they replicate. The idea of information holds the key for drilling down to universal principles that may find commonality between information for humans in a cultural sense and information conveyed through natural evolution for life forms. It is the search for this commonality that has driven my professional interests for decades, spanning from population genetics and evolution to computers, information theory and semantics [8].

But before we can tackle these connections head on, it is important to address a couple of important misconceptions (as I see them).

Seque #1: Information is (Not!) Entropy

In looking to information as a first principle, Claude Shannon‘s seminal work in 1948 on information theory must be taken as the essential point of departure [9]. The motivation of Shannon’s paper and work by others preceding him was to understand information losses in communication systems or networks. Much of the impetus for this came about because of issues in wartime communications and early ciphers and cryptography. (As a result, the Shannon paper is also intimately related to data patterns and data compression, not further discussed here.)

In a strict sense, Shannon’s paper was really talking about the amount of information that could be theoretically and predictably communicated between a sender and a receiver. No context or semantics were implied in this communication, only the amount of information (for which Shannon introduced the term “bits” [10]) and what might be subject to losses (or uncertainty in the accurate communication of the message). In this regard, what Shannon called “information” is what we would best term “data” in today’s parlance.

The form that the uncertainty (unpredictability) calculation that Shannon derived:

 \displaystyle H(X) = - \sum_{i=1}^np(x_i)\log_b p(x_i)

very much resembled the mathematical form for Boltzmann‘s original definition of entropy (as elaborated upon by Gibbs, denoted as S, for Gibb’s entropy):

S = - k_B \sum p_i \ln p_i \,

and thus Shannon also labelled his measure of unpredictability, H, as entropy [10].

After Shannon, and nearly a century after Boltzmann, work by individuals such as Jaynes in the field of statistical mechanics came to show that thermodynamic entropy can indeed be seen as an application of Shannon’s information theory, so there are close parallels [11]. This parallel of mathematical form and terminology has led many to assert that information is entropy.

I believe this assertion is a misconception on two grounds.

First, as noted, what is actually being measured here is data (or bits), not information embodying any semantic meaning or context. Thus, the formula and terminology is not accurate for discussing “information” in a conventional sense.

Second, the Shannon methods are based on the communication (transmittal) between a sender and a receiver. Thus the Shannon entropy measure is actually a measure of the uncertainty for either one of these states. The actual information that gets transmitted and predictably received was formulated by Shannon as R (which he called rate), and he expressed basically as:

R = Hbefore – Hafter

R, then, becomes a proxy for the amount of information accurately communicated. R can never be zero (because all communication systems have losses). Hbefore and Hafter are both state functions for the message, so this also makes R a function of state. So while there is Shannon entropy (unpredictability) for any given sending or receiving state, the actual amount of information (that is, data) that is transmitted is a change in state as measured by a change in uncertainty between sender (Hbefore) and receiver (Hafter). In the words of Thomas Schneider, who provides a very clear discussion of this distinction [12]:

Information is always a measure of the decrease of uncertainty at a receiver.

These points do not directly bear on the basis of information as discussed below, but help remove misunderstandings that might undercut those points. Further, these clarifications make consistent theoretical foundations of information (data) with natural evolution while being logically consistent with the 2nd law of thermodynamics (see next).

Seque #2: Entropy is (Not!) Disorder

The 2nd law of thermodynamics expresses the tendency that, over time, differences in temperature, pressure, or chemical potential equilibrate in an isolated physical system. Entropy is a measure of this equilibration: for a given physical system, the highest entropy state is one at equilibrium. Fluxes or gradients arise when there are differences in state potentials in these systems. (In physical systems, these are known as sources and sinks; in information theory, they are sender and receiver.) Fluxes go from low to high entropy, and are non-reversible — the “arrow of time” — without the addition of external energy. Heat, for example, is a by product of fluxes in thermal energy. Because these fluxes are directional in isolation, a perpetual motion machine is shown as impossible.

In a closed system (namely, the entire cosmos), one can see this gradient as spanning from order to disorder, with the equilibrium state being the random distribution of all things. This perspective, and much schooling regarding these concepts, tends to present the idea of entropy as a “disordered” state. Life is seen as the “ordered” state in this mindset. Hewing to this perspective, some prominent philosophers, scientists and others have sometimes tried to present the “force” representing life and “order” as an opposite one to entropy. One common term for this opposite “force” is “negentropy[13].

But, in the real conditions common to our lives, our environment is distinctly open, not closed. We experience massive influxes of energy via sunlight, and have learned as well how to harness stored energy from eons past in further sources of fossil and nuclear energy. Our open world is indeed a high energy one, and one that increases that high-energy state as our knowledge leads us to exploit still further resources of higher and higher quality. As Buckminster Fuller once famously noted, electricity consumption (one of the highest quality energy resources found to date) has become a telling metric about the well-being and wealth of human societies [14].

The high-energy environments fostering life on earth and more recently human evolution establish a local (in a cosmic sense) gradient that promotes fluxes to more ordered states, not lesser unordered ones. These fluxes remain faithful to basic physical laws and are non-deterministic [15]. Indeed, such local gradients can themselves be seen as consistent with the conditions initially leading to life, favoring the random event in the early primordial soup that led to chemical structures such as chirality, auto-catalytic reactions, enzymes, and then proteins, which became the eventual building blocks for animate life [16].

These events did not have preordained outcomes (that is, they were non-deterministic), but were the result of time and variation in the face of external energy inputs to favor the marginal combinatorial improvement. The favoring of the new marginal improvement also arises consistent with entropy principles, by giving a competitive edge to those structures that produce faster movements across the existing energy gradient. According to Annila and Annila [16]:

“According to the thermodynamics of open systems, every entity, simple or sophisticated, is considered as a catalyst to increase entropy, i.e., to diminish free energy. Catalysis calls for structures. Therefore, the spontaneous rise of structural diversity is inevitably biased toward functional complexity to attain and maintain high-entropy states.”

Via this analysis we see that life is not at odds with entropy, but is consistent with it. Further, we see that incremental improvements in structure that are consistent with the maximum entropy production principle will be favored [17]. Of course, absent the external inputs of energy, these gradients would reverse. Under those conditions, the 2nd law would promote a breakdown to a less ordered system, what most of us have been taught in schools.

With these understandings we can now see the dichotomy as life representing order with entropy disorder as being false. Further, we can see a guiding set of principles that is consistent across the broad span of evolution from primordial chemicals and enzymes to basic life and on to human knowledge and artifacts. This insight provides the fundamental “unit” we need to be looking toward, and not the gene nor the “meme”.

Information is Structure

Of course, the fundamental “unit” we are talking about here is information, and not limited as is Shannon’s concept to data. The quality that changes data to information is structure, and structure of a particular sort. Like all structure, there is order or patterns, often of a hierarchical or fractal or graph nature. But the real aspect of the structure that is important is the marginal ability of that structure to lead to improvements in entropy production. That is, processes are most adaptive (and therefore selected) that maximize entropy production. Any structure that emerges that is able to reduce the energy gradient faster will be favored.

However, remember, these are probabilistic, statistical processes. Uncertainties in state may favor one structure at one time versus another at a different time. The types of chemical compounds favored in the primordial soup were likely greatly influenced by thermal and light cycles and drying and wet conditions. In biological ecosystems, there are huge differences in seed or offspring production or in overall species diversity and ecological complexity based on the stability (say, tropics) or instability (say, disturbance) of local environments. As noted, these processes are inherently non-deterministic.

As we climb up the chain from the primordial ooze to life and then to humans and our many information mechanisms and technology artifacts (which are themselves embodiments of information), we see increasing complexity and structure. But we do not see uniformity of mechanisms or vehicles.

The general mechanisms of information transfer in living organisms occur (generally) via DNA in genes, mediated by sex in higher organisms, subject to random mutations, and then kept or lost entirely as their host organisms survive to procreate or not. Those are harsh conditions: the information survives or not (on a population basis) with high concentrations of information in DNA and with a priority placed on remixing for new combinations via sex. Information exchange (generally) only occurs at each generational event.

Human cultural information, however, is of an entirely different nature. Information can be made persistent, can be recorded and shared across individuals or generations, extended with new innovations like written language or digital computers, or combined in ways that defy the limits of sex. Occasionally, of course, loss of living languages due to certain cultures or populations dying out or horrendous catastrophes like the Spanish burning (nearly all of) the Mayan’s existing books can also occur [18]. The environment will also be uncertain.

So, while we can define DNA in genes or the ideas of a “meme” all as information, in fact we now see how very unlike the dynamics and structures of these two forms really are. We can be awestruck with the elegance and sublimity of organic evolution. We can also be inspired by song or poem or moved to action through ideals such as truth and justice. But organic evolution does not transpire like reading a book or hearing a sermon, just like human ideas and innovations don’t act like genes. The “meme” is a totally false analogy. The only constant is information.

Some Tentative Implications

The closer we come to finding true universals, the better we will be able to create maximum entropy producing structures. This, in turn, has some pretty profound implications. The insight that keys these implications begins with an understanding of the fundamental nature — and importance — of information. According to Karnani et al [19]:

“. . . the common contemporary consent, the second law of thermodynamics, is perceived to drive disorder. Therefore, it may appear, at first sight, inconceivable that this universal law could possibly account for the existence and orderly characteristics of information, as well as for its meaningful content. However, the second law, or equivalently the principle of increasing entropy, merely states that difference among energy densities tends to vanish. When the surrounding energy density is high, the system will evolve toward a stationary state by increasing its energy content, e.g, by devising orderly machinery for energy transduction to acquire energy. . . . Syntax of information, when described by thermodynamics, is associated with the entropy of the physical representation, and significance of information is associated with the entropy increase in the receiver system when it executes the encoded information.”

All would agree that the evolution of life over the past few billion years is truly wondrous. But, what is equally wondrous is that the human species has come to learn and master symbols. That mastery, in turn, has broken the bounds of organic evolution and has put into our hands the very means and structure of information itself. Via this entirely new — and incredibly accelerated — path to information structures, we are only now beginning to see some of its implications:

  • Unlike all other organisms, we dominate our environment and have experienced increasing wealth and freedom. Wealth increases and their universal applicability continue to increase at an exponential rate [20]
  • We no longer depend on the random variant to maximize our entropy producing structures. We can now do so purposefully and with symbologies and bit streams of our own devising
  • Potentially all information variants can be recorded and shared across all human individuals and generations, a complete decoupling from organic boundaries
  • Key ideas and abstractions, such as truth, justice and equality, can operate on a species-wide basis and become adopted without massive die-offs of individuals
  • We are actively moving ourselves into higher-level energy states, further increasing the potential for wealth and new structures
  • We are actively impacting our local environment, potentially creating the conditions for our species’ demise
  • We are increasingly engaging all individuals of the human species in these endeavors through literacy, education and access to global information sources. This provides a still further multiplier effect on humanity’s ability to devise and manipulate information structures into more adaptive and highly-ordered states.

The idea of a “meme” actually cheapens our understanding of these potentials.

Ideas matter and terminology matters. These are the symbols by which we define and communicate potentials. If we choose the wrong analogies or symbols — as “meme” is in this case — we are picking the option with the lower entropy potential. Whether I assert it to be so or not, the “meme” concept is an information structure doomed for extinction.


[1] Richard Dawkins, 1976. The Selfish Gene, Oxford University Press, New York City, ISBN 0-19-286092-5.
[2] This phrase was perhaps first made famous by Mark Twain or Bernard Baruch, but in any case is clearly understood now by all.
[3] According to Wikipedia, Benitez-Bribiesca calls memetics “a dangerous idea that poses a threat to the serious study of consciousness and cultural evolution”. He points to the lack of a coding structure analogous to the DNA of genes, and to instability of any mutation mechanisms for “memes” sufficient for standard evolution processes. See Luis Benitez Bribiesca, 2001. “Memetics: A Dangerous Idea”, Interciencia: Revista de Ciencia y Technologia de América (Venezuela: Asociación Interciencia) 26 (1): 29–31, January 2001. See http://redalyc.uaemex.mx/redalyc/pdf/339/33905206.pdf.
[4] Joseph Fracchia and R.C. Lewontin, 2005. “The Price of Metaphor”, History and Theory (Wesleyan University) 44 (44): 14–29, February 2005.
[5] See further M. K. Bergman, 2012. “Give Me a Sign: What Do Things Mean on the Semantic Web?,” posting on AI3:::Adaptive Information blog, January 24, 2012. See http://www.mkbergman.com/994/give-me-a-sign-what-do-things-mean-on-the-semantic-web/.
[6] Terrence Deacon, 1999. “The Trouble with Memes (and what to do about it)”. The Semiotic Review of Books 10(3). See http://projects.chass.utoronto.ca/semiotics/srb/10-3edit.html.
[7] Kin selection refers to changes in gene frequency across generations that are driven at least in part by interactions between related individuals. Some mathematical models show how evolution may favor the reproductive success of an organism’s relatives, even at a cost to an individual organism. Under this mode, selection can occur at the level of populations and not the individual or the gene. Kin selection is often posed as the mechanism for the evolution of altruism or social insects. Among others, kin selection and inclusive fitness was popularized by W. D. Hamilton and Robert Trivers.
[8] You may want to see my statement of purpose under the Blogasbörd topic, first written seven years ago when I started this blog.
[9] Claude E. Shannon, 1948. “A Mathematical Theory of Communication”, Bell System Technical Journal, 27: 379–423, 623-656, July, October, 1948. See http://cm.bell-labs.com/cm/ms/what/shannonday/shannon1948.pdf.
[10] As Shannon acknowledges in his paper, the “bit” term was actually suggested by J. W. Tukey. Shannon can be more accurately said to have popularized the term via his paper.
[12] See Thomas D. Schneider, 2012. “Information Is Not Entropy, Information Is Not Uncertainty!,” Web page retrieved April 4, 2012; see http://www.lecb.ncifcrf.gov/~toms/information.is.not.uncertainty.html.
[13] The “negative entropy” (also called negentropy or syntropy) of a living system is the entropy that it exports to keep its own entropy low, and according to proponents lies at the intersection of entropy and life. The concept and phrase “negative entropy” were introduced by Erwin Schrödinger in his 1944 popular-science book What is Life?. See Erwin Schrödinger, 1944. What is Life – the Physical Aspect of the Living Cell, Cambridge University Press, 1944. A copy may be downloaded at http://old.biovip.com/UpLoadFiles/Aaron/Files/2005051204.pdf.
[14] R. Buckminster Fuller, 1981. Critical Path, St. Martin’s Press, New York City, 471 pp. See especially p. 103 ff.
[15] The seminal paper first presenting this argument is Vivek Sharma and Arto Annila, 2007. “Natural Process – Natural Selection”, Biophysical Chemistry 127: 123-128. See http://www.helsinki.fi/~aannila/arto/natprocess.pdf. This basic theme has been much expanded upon by Annila and his various co-authors. See, for example, [16] and [19], among many others.
[16] Arto Annila and Erkki Annila, 2008. “Why Did Life Emerge?,” International Journal of Astrobiology 7(3 and 4): 293-300. See http://www.helsinki.fi/~aannila/arto/whylife.pdf.
[17] According to Wikipedia, the principle (or “law”) of maximum entropy production is an aspect of non-equilibrium thermodynamics, a branch of thermodynamics that deals with systems that are not in thermodynamic equilibrium. Most systems found in nature are not in thermodynamic equilibrium and are subject to fluxes of matter and energy to and from other systems and to chemical reactions. One fundamental difference between equilibrium thermodynamics and non-equilibrium thermodynamics lies in the behavior of inhomogeneous systems, which require for their study knowledge of rates of reaction which are not considered in equilibrium thermodynamics of homogeneous systems. Another fundamental difference is the difficulty in defining entropy in macroscopic terms for systems not in thermodynamic equilibrium.
The principle of maximum entropy production states that the in comparing two or more alternate paths for crossing an energy gradient that the one that creates the maximum entropy change will be favored. The maximum entropy (sometimes abbreviated MaxEnt or MaxEp) concept is related to this notion. It is also known as the maximum entropy production principle, or MEPP.
[18] The actual number of Mayan books burned by the Spanish conquistadors is unknown, but is somewhere between tens and thousands; see here. Only three or four codexes are known to survive today. Also, Wikipedia contains a listing of notable book burnings throughout history.
[19] Mahesh Karnani, Kimmo Pääkkönen and Arto Annila, 2009. “The Physical Character of Information,” Proceedings of the Royal Society A, April 27, 2009. See http://www.helsinki.fi/~aannila/arto/natinfo.pdf.
[20] I discuss and chart the exponential growth of human wealth based on Angus Maddison data in M. K. Bergman, 2006. “The Biggest Disruption in History: Massively Accelerated Growth Since the Industrial Revolution,” post in AI3:::Adaptive Information blog, July 27, 2006. See http://www.mkbergman.com/250/the-biggest-disruption-in-history-massively-accelerated-growth-since-the-industrial-revolution/.
Posted:January 24, 2012

The Triadic of SignsCoca-Cola, Toucans and Charles Sanders Peirce

The crowning achievement of the semantc Web is the simple use of URIs to identify data. Further, if the URI identifier can resolve to a representation of that data, it now becomes an integral part of the HTTP access protocol of the Web while providing a unique identifier for the data. These innovations provide the basis for distributed data at global scale, all accessible via Web devices such as browsers and smartphones that are now a ubiquitous part of our daily lives.

Yet, despite these profound and simple innovations, the semantic Web’s designers and early practitioners and advocates have been mired in a muddled, metaphysical argument of at least a decade over what these URIs mean, what they reference, and what their actual true identity is. These muddles about naming and identity, it might be argued, are due to computer scientists and programmers trying to grapple with issues more properly the domain of philosophers and linguists. But that would be unfair. For philosophers and linguists themselves have for centuries also grappled with these same conundrums [1].

As I argue in this piece, part of the muddle results from attempting to do too much with URIs while another part results from not doing enough. I am also not trying to directly enter the fray of current standards deliberations. (Despite a decade of controversy, I optimistically believe that the messy process of argument and consensus building will work itself out [2].) What I am trying to do in this piece, however, is to look to one of America’s pre-eminent philosophers and logicians, Charles Sanders Peirce (pronounced “purse”), to inform how these controversies of naming, identity and meaning may be dissected and resolved.

‘Identity Crisis’, httpRange-14, and Issue 57

The Web began as a way to hyperlink between documents, generally Web pages expressed in the HTML markup language. These initial links were called URLs (uniform resource locators), and each pointed to various kinds of electronic resources (documents) that could be accessed and retrieved on the Web. These resources could be documents written in HTML or other encodings (PDFs, other electronic formats), images, streaming media like audio or videos, and the like [3].

All was well and good until the idea of the semantic Web, which postulated that information about the real world — concepts, people and things — could also be referenced and made available for reasoning and discussion on the Web. With this idea, the scope of the Web was massively expanded from electronic resources that could be downloaded and accessed via the Web to now include virtually any topic of human discourse. The rub, of course, was that ideas such as abstract concepts or people or things could not be “dereferenced” nor downloaded from the Web.

One of the first things that needed to change was to define a broader concept of a URI “identifier” above the more limited concept of a URL “locator”, since many of these new things that could be referenced on the Web went beyond electronic resources that could be accessed and viewed [3]. But, since what the referent of the URI now actually might be became uncertain — was it a concept or a Web page that could be viewed or something else? — a number of commentators began to note this uncertainty as the “identity crisis” of the Web [4]. The topic took on much fervor and metaphysical argument, such that by 2003, Sandro Hawke, a staffer of the standards-setting W3C (World Wide Web Consortium), was able to say, “This is an old issue, and people are tired of it” [5].

Yet, for many of the reasons described more fully below, the issue refused to go away. The Technical Architecture Group (TAG) of the W3C took up the issue, under a rubric that came to be known as httpRange-14 [6]. The issue was first raised in March 2002 by Tim Berners-Lee, accepted for TAG deliberations in February 2003, with then a resolution offered in June 2005 [7]. (Refer to the original resolution and other information [6] to understand the nuances of this resolution, since particular commentary on that approach is not the focus of this article.) Suffice it to say here, however, that this resolution posited an entirely new distinction of Web content into “information resources” and “non-information resources”, and also recommended the use of the HTTP 303 redirect code for when agents requesting a URI should be directed to concepts versus viewable documents.

This “resolution” has been anything but. Not only can no one clearly distinguish these de novo classes of “information resources” [19], but the whole approach felt arbitrary and kludgy.

Meanwhile, the confusions caused by the “identity crisis” and httpRange-14 continued to perpetuate themselves. In 2006, a major workshop on “Identity, Reference and the Web” (IRW 2006) was held in conjunction with the Web’s major WWW2006 conference in Edinburgh, Scotland, on May 23, 2006 [8]. The various presentations and its summary (by Harry Halpin) are very useful to understand these issues. What was starting to jell at this time was the understanding that the basis of identity and meaning on the Web posed new questions, and ones that philosophers, logicians and linguists needed to be consulted to help inform.

The fiat of the TAG’s 2005 resolution has failed to take hold. Over the ensuing years, various eruptions have occurred on mailing lists and within the TAG itself (now expressed as Issue 57) to revisit these questions and bring the steps moving forward into some coherent new understanding. Though linked data has been premised on best-practice implementation of these resolutions [9], and has been a qualified success, many (myself included) would claim that the extra steps and inefficiencies required from the TAG’s httpRange-14 guidance have been hindrances, not facilitators, of the uptake of linked data (or the semantic Web).

Today, despite the efforts of some to claim the issue closed, it is not. Issue 57 and the periodic bursts from notable semantic Web advocates such as Ian Davis [10], Pat Hayes and Harry Halpin [11], Ed Summers [12], Xiaoshu Wang [13], David Booth [14] and TAG members themselves, such as Larry Masinter [15] and Jonathan Rees [16], point to continued irresolution and discontent within the advocate community. Issue 57 currently remains open. Meanwhile, I think, all of us interested in such matters can express concern that linked data, the semantic Web and interoperable structured data have seen less uptake than any of us had hoped or wanted over the past decade. As I have stated elsewhere, unclear semantics and muddled guidelines help to undercut potential use.

As each of the eruptions over these identity issues has occurred, the competing camps have often been characterized as “talking past one another”; that is, not communicating in such a way as to help resolve to consensus. While it is hardly my position to do so, I try to encapsulate below the various positions and prejudices as I see them in this decades-long debate. I also try to share my own learning that may help inform some common ground. Forgive me if I overly simplify these vexing issues by returning to what I see as some first principles . . . .

What’s in a Name?

Original Coca-Cola bottle

One legacy of the initial document Web is the perception that Web addresses have meaning. We have all heard of the multi-million dollar purchasing of domains [17] and the adjudication that may occur when domains are hijacked from their known brands or trademark owners. This legacy has tended to imbue URIs with a perceived value. It is not by accident, I believe, that many within the semantic Web and linked data communities still refer to “minting” URIs. Some believe that ownership and control over URIs may be equivalent to grabbing up valuable real estate. It is also the case that many believe the “name” given to a URI acts to name the referent to which it refers.

This perception is partially true, partially false, but moreover incomplete in all cases. We can illustrate these points with the global icon, “Coca-Cola”.

As for the naming aspects, let’s dissect what we mean when we use the label “Coca-Cola” (in a URI or otherwise). Perhaps the first thing that comes to mind is “Coca-Cola,” the beverage (which has a description on Wikipedia, among other references). Because of its ubiquity, we may also recognize the image of the Coca-Cola bottle to the left as a symbol for this same beverage. (Though, in the hilarious movie, The Gods, They Must be Crazy, Kalahari Bushmen, who had no prior experience of Coca-Cola, took the bottle to be magical with evil powers [18].) Yet even as reference to the beverage, the naming aspects are a bit cloudy since we could also use the fully qualified synonyms of “Coke”, “Coca-cola” (small C), “Classic Coke” and the hundreds of language variants worldwide.

On the other hand, the label “Coca-Cola” could just as easily conjure The Coca-Cola Company itself. Indeed, the company web site is the location pointed to by the URI of http://www.thecoca-colacompany.com/. But, even that URI, which points to the home Web page of the company, does not do justice to conveying an understanding or description of the company. For that, additional URIs may need to be invoked, such as the description at Wikipedia, the company’s own company description page, plus perhaps the company’s similar heritage page.

Of course, even these links and references only begin to scratch the surface of what the company Coca-Cola actually is: headquarters, manufacturing facilities, 140,000 employees, shareholders, management, legal entities, patents and Coke recipe, and the like. Whether in human languages or URIs, in any attempt to signify something via symbols or words (themselves another form of symbol), we risk ambiguity and incompleteness.

URI shorteners also undercut the idea that a URI necessarily “names” something. Using the service bitly, we can shorten the link to the Wikipedia description of the Coke beverage to http://bit.ly/xnbA6 and we can shorten the link to The Coca-Cola Company Web site to http://bit.ly/9ojUpL. I think we can fairly say that neither of these shortened links “name” their referents. The most we can say about a URI is that it points to something. With the vagaries of meaning in human languages, we might also say that URIs refer to something, denote something or identify (but not in the sense of completely define) something.

From this discussion, we can assert with respect to the use of URIs as “names” that:

  1. In all cases, URIs are pointers to a particular referent
  2. In some cases, URIs do act to “name” some things
  3. Yet, even when used as “names,” there can be ambiguity as to what exactly the referent is that is denoted by the name
  4. Resolving what such “names” mean is a matter of context and reference to further information or links, and
  5. Because URIs may act as “names”, it is appropriate to consider social conventions and contracts (e.g., trademarks, brands, legal status) in adjudicating who can own the URI.

In summary, I think we can say that URIs may act as names, but not in all or most cases, and when used as such are often ambiguous. Absolutely associating URIs as names is way too heavy a burden, and incorrect in most cases.

What is a Resource?

The “name” discussion above masks that in some cases we are talking about a readable Web document or image (such as the Wikipedia description of the Coke beverage or its image) versus the “actual” thing in the real world (the Coke beverage itself or even the company). This distinction is what led to the so-called “identity crisis”, for which Ian Davis has used a toucan as his illustrative thing [10].Keel-billed Toucan

As I note in the conclusion, I like Davis’ approach to the identity conundrum insofar as Web architecture and linked data guidance are concerned. But here my purpose is more subtle: I want to tease apart still further the apparent distinction between an electronic description of something on the Web and the “actual” something. Like Davis, let’s use the toucan.

In our strawman case, we too use a description of the toucan (on Wikipedia) to represent our “information resource” (the accessible, downloadable electronic document). We contrast to that a URI that we mean to convey the actual physical bird (a “non-information resource” in the jumbled jargon of httpRange-14), which we will designate via the URI of http://example.com/toucan.

Despite the tortured (and newly conjured) distinction between “information resource” and “non-information resource”, the first blush reaction is that, sure, there is a difference between an electronic representation that can be accessed and viewed on the Web and its true, “actual” thing. Of course people can not actually be rendered and downloaded on the Web, but their bios and descriptions and portrait images may. While in the abstract such distinctions appear true and obvious, in the specifics that get presented to experts, there is surprising disagreement as to what is actually an “information resource” v. a “non-information resource” [19]. Moreover, as we inspect the real toucan further, even that distinction is quite ambiguous.

When we inspect what might be a definitive description of “toucan” on Wikipedia, we see that the term more broadly represents the family of Ramphastidae, which contains five genera and forty different species. The picture we are showing to the right is but of one of those forty species, that of the keel-billed toucan (Ramphastos sulfuratus). Viewing the images of the full list of toucan species shows just how divergent these various “physical birds” are from one another. Across all species, average sizes vary by more than a factor of three with great variation in bill sizes, coloration and range. Further, if I assert that the picture to the right is actually that of my pet keel-billed toucan, Pretty Bird, then we can also understand that this representation is for a specific individual bird, and not the physical keel-billed toucan species as a whole.

The point of this diversion is not a lecture on toucans, but an affirmation that distinctions between “resources” occur at multiple levels and dimensions. Just as there is no self-evident criteria as to what constitutes an “information resource”, there is also not a self-evident and fully defining set of criteria as to what is the physical “toucan” bird. The meaning of what we call a “toucan” bird is not embodied in its label or even its name, but in the context and accompanying referential information that place the given referent into a context that can be communicated and understood. A URI points to (“refers to”) something that causes us to conjure up an understanding of that thing, be it a general description of a toucan, a picture of a toucan, an understanding of a species of toucan, or a specific toucan bird. Our understanding or interpretation results from the context and surrounding information accompanying the reference.

In other words, a “resource” may be anything, which is just the way the W3C has defined it. There is not a single dimension which, magically, like “information” and “non-information,” can cleanly and definitely place a referent into some state of absolute understanding. To assert that such magic distinctions exist is a flaw of Cartesian logic, which can only be reconciled by looking to more defensible bases in logic [20].

Peirce and the Logic of Signs

The logic behind these distinctions and nuances leads us to Charles Sanders PeirceCharles Sanders Peirce (1839 – 1914). Peirce (pronounced “purse”) was an American logician, philosopher and polymath of the first rank. Along with Frege, he is acknowledged as the father of predicate calculus and the notation system that formed the basis of first-order logic. His symbology and approach arguably provide the logical basis for description logics and other aspects underlying the semantic Web building blocks of the RDF data model and, eventually, the OWL language. Peirce is the acknowledged founder of pragmatism, the philosophy of linking practice and theory in a process akin to the scientific method. He was also the first formulator of existential graphs, an essential basis to the whole field now known as model theory. Though often overlooked in the 20th century, Peirce has lately been enjoying a renaissance with his voluminous writings still being deciphered and published.

The core of Peirce’s world view is based in semiotics, the study and logic of signs. In his seminal writing on this, “What is in a Sign?” [21], he wrote that “every intellectual operation involves a triad of symbols” and “all reasoning is an interpretation of signs of some kind”. Peirce had a predilection for expressing his ideas in “threes” throughout his writings.

Semiotics is often split into three branches: 1) syntactics – relations among signs in formal structures; 2) semantics – relations between signs and the things to which they refer; and 3) pragmatics – relations between signs and the effects they have on the people or agents who use them.

Peirce’s logic of signs in fact is a taxonomy of sign relations, in which signs get reified and expanded via still further signs, ultimately leading to communication, understanding and an approximation of “canonical” truth. Peirce saw the scientific method as itself an example of this process.

A given sign is a representation amongst the triad of the sign itself (which Peirce called a representamen, the actual signifying item that stands in a well-defined kind of relation to the two other things), its object and its interpretant. The object is the actual thing itself. The interpretant is how the agent or the perceiver of the sign understands and interprets the sign. Depending on the context and use, a sign (or representamen) may be either an icon (a likeness), an indicator or index (a pointer or physical linkage to the object) or a symbol (understood convention that represents the object, such as a word or other meaningful signifier).

An interpretant in its barest form is a sign’s meaning, implication, or ramification. For a sign to be effective, it must represent an object in such a way that it is understood and used again. This makes the assignment and use of signs a community process of understanding and acceptance [20], as well as a truth-verifying exercise of testing and confirming accepted associations.

John Sowa has done much to help make some of Peirce’s obscure language and terminology more accessible to lay readers [22]. He has expressed Peirce’s basic triad of sign relations as follows, based around the Yojo animist cat figure used by the character Queequeg in Herman Melville’s Moby-Dick:

The Triangle of Meaning

In this figure, object and symbol are the same as the Peirce triad; concept is the interpretant in this case. The use of the word ‘Yojo’ conjures the concept of cat.

This basic triad representation has been used in many contexts, with various replacements or terms at the nodes. Its basic form is known as the Meaning Triangle, as was popularized by Ogden and Richards in 1923 [23].

The key aspect of signs for Peirce, though, is the ongoing process of interpretation and reference to further signs, a process he called semiosis. A sign of an object leads to interpretants, which, as signs, then lead to further interpretants. In the Sowa example below, we show how meaning triangles can be linked to one another, in this case by abstracting that the triangles themselves are concepts of representation; we can abstract the ideas of both concept and symbol:

Representing an Object by a Concept

We can apply this same cascade of interpretation to the idea of the sign (or representamen), which in this case shows that a name can be related to a word symbol, which in itself is a combination of characters in a string called ‘Yojo’:

Representing Signs of Signs of Signs

According to Sowa [22]:

“What is revolutionary about Peirce’s logic is the explicit recognition of multiple universes of discourse, contexts for enclosing statements about them, and metalanguage for talking about the contexts, how they relate to one another, and how they relate to the world and all its events, states, and inhabitants.
“The advantage of Peircean semiotics is that it firmly situates language and logic within the broader study of signs of all types. The highly disciplined patterns of mathematics and logic, important as they may be for science, lie on a continuum with the looser patterns of everyday speech and with the perceptual and motor patterns, which are organized on geometrical principles that are very different from the syntactic patterns of language or logic.”

Catherine Legg [20] notes that the semiotic process is really one of community involvement and consensus. Each understanding of a sign and each subsequent interpretation helps come to a consensus of what a sign means. It is a way of building a shared understanding that aids communication and effective interpretation. In Peirce’s own writings, the process of interpretation can lead to validation and an eventual “canonical” or normative interpretation. The scientific method itself is an extreme form of the semiotic process, leading ultimately to what might be called accepted “truths”.

Peircean Semiotics of URIs

So, how do Peircean semiotics help inform us about the role and use of URIs? Does this logic help provide guidance on the “identity crisis”?

The Peircean taxonomy of signs has three levels with three possible sign roles at each level, leading to a possible 27 combinations of sign representations. However, because not all sign roles are applicable at all levels, Peirce actually postulated only ten distinct sign representations.

Common to all roles, the URI “sign” is best seen as an index: the URI is a pointer to a representation of some form, be it electronic or otherwise. This representation bears a relation to the actual thing that this referent represents, as is true for all triadic sign relationships. However, in some contexts, again in keeping with additional signs interpreting signs in other roles, the URI “sign” may also play the role of a symbolic “name” or even as a signal that the resource can be downloaded or accessed in electronic form. In other words, by virtue of the conventions that we choose to assign to our signs, we can supply additional information that augments our understanding of what the URI is, what it means, and how it is accessed.

Of course, in these regards, a URI is no different than any other sign in the Peircean world view: it must reside in a triadic relationship to its actual object and an interpretation of that object, with further understanding only coming about by the addition of further signs and interpretations.

In shortened form, this means that a URI, acting alone, can at most play the role of a pointer between an object and its referent. A URI alone, without further signs (information), can not inform us well about names or even what type of resource may be at hand. For these interpretations to be reliable, more information must be layered on, either by accepted convention of the current signs or the addition of still further signs and their interpretations. Since the attempts to deal with the nature of a URI resource by fiat as stipulated by httpRange-14 neither meet the standards of consensus nor empirical validity, the attempt can not by definition become “canonical”. This does not mean that httpRange-14 and its recommended practices can not help in providing more information and aiding interpretation for what the nature of a resource may be. But it does mean that httpRange-14 acting alone is insufficient to resolve ambiguity.

Moreover, what we see in the general nature of Peirce’s logic of signs is the usefulness of adding more “triads” of representation as the process to increase understanding through further interpretation. Kind of sounds like adding on more RDF triples, does it not?

Global is Neither Indiscriminate Nor Unambiguous

Names, references, identity and meaning are not absolutes. They are not philosophically, and they are not in human language. To expect machine communications to hold to different standards and laws than human communications is naive. To effect machine communications our challenge is not to devise new rules, but to observe and apply the best rules and practices that human communications instruct.

There has been an unstated hope at the heart of the semantic Web enterprise that simply expressing statements in the right way (syntax) and in the right form (RDF) is sufficient to facilitate machine communications. But this hope, too, is naive and silly. Just as we do not accept all human utterances as truth, neither will we accept all machine transmissions as reliable. Some of the information will be posted in error; some will be wrong or ill-fitting to our world view; some will be malicious or intended to deceive. Spam and occasionally lousy search results on the Web tell us that Web documents are subject to these sources of unsuitability, why is not the same true of data?

Thus, global data access via the semantic Web is not — and can never be — indiscriminate nor unambiguous. We need to understand and come to trust sources and provenance; we need interpretation and context to decide appropriateness and validity; and we need testing and validation to ensure messages as received are indeed correct. Humans need to do these things in their normal courses of interaction and communication; our machine systems will need to do the same.

These confirmations and decisions as to whether the information we receive is actionable or not will come about via still more information. Some of this information may come about via shared conventions. But most will come about because we choose to provide more context and interpretation for the core messages we hope to communicate.

A Go-Forward Approach

Nearly five years ago Hayes and Halpin put forth a proposal to add ex:refersTo and ex:describedBy to the standard RDF vocabulary as a way for authors to provide context and explanation for what constituted a specific RDF resource [11]. In various ways, many of the other individuals cited in this article have come to similar conclusions. The simple redirect suggestions of both Ian Davis [10] and Ed Summers [12] appear particularly helpful.

Over time, we will likely need further representations about resources regarding such things as source, provenance, context and other interpretations that would help remove ambiguities as to how the information provided by that resource should be consumed or used. These additional interpretations can mechanically be provided via referenced ontologies or embedded RDFa (or similar). These additional interpretations can also be aided by judicious, limited additions of new predicates to basic language specifications for RDF (such as the Hayes and Halpin suggestions).

In the end, of course, any frameworks that achieve consensus and become widely adopted will be simple to use, easy to understand, and straightforward to deploy. The beauty of best practices in predicates and annotations is that failures to provide are easy to test. Parties that wish to have their data consumed have incentive to provide sufficient information so as to enable interpretation.

There is absolutely no reason that these additions can not co-exist with the current httpRange-14 approach. By adding a few other options and making clear the optional use of httpRange-14, we would be very Peirce-like in our go-forward approach: We are being both pragmatic while we add more means to improve our interpretations for what a Web resource is and is meant to be.


[1] Throughout intellectual history, a number of prominent philosophers and logicians have attempted to describe naming, identity and reference of objects and entities. Here are a few that you may likely encounter in various discussions of these topics in reference to the semantic Web; many are noted philosophers of language:

  • Aristotle (384 BC – 322 BC) – founder of formal logic; formulator and proponent of categorization; believed in the innate “universals” of various things in the natural world
  • Rudolf Carnap (1891 – 1970) -  proposed a logical syntax that provided a system of concepts, a language, to enable logical analysis via exactly formula; a basis for natural language processing;rejected the idea and use of metaphysics
  • René Descartes (1596 – 1650) – posited a boundary between mind and the world; the meaning of a sign is the intension of its producer, and is private and incorrigible
  • Friedrich Ludwig Gottlob Frege (1848 – 1925) – one of the formulators of first-order logic, though syntax not adopted; advocated shared senses, which can be objective and sharable
  • Kurt Gödel (1906 – 1978) – his two incompleteness theorems are some of the most important logic contributions of all time; they establish inherent limitations of all but the most trivial axiomatic systems capable of doing arithmetic, as well as for computer programs
  • David Hume (1711 – 1776) – embraced natural empiricism, but kept the Descartes concept of an “idea”
  • Immanuel Kant (1724 – 1804) – one of the major philosophers in history, argued that experience is purely subjective without first being processed by pure reason; a major influence on Peirce
  • Saul Kripke (1940 – ) – proposed the causal theory of reference and what proper names mean via a “baptism” by the namer
  • Gottfried Wilhelm Leibniz (1646 – 1716) – the classic definition of identity is Leibniz’s Law, which states that if two objects have all of their properties in common, they are identical and so only one object
  • Richard Montague (1930 – 1971) – wrote much on logic and set theory; student of Tarski; pioneered a logical approach to natural language semantics; associated with model theory, model-theoretic semantics
  • Charles Sanders Peirce (1839 – 1914) – see main text
  • Willard Van Orman Quine (1908 – 2000) – noted analytical philosopher, advocated the “radical indeterminancy of translation” (can never really know)
  • Bertrand Russell (1872 – 1970) – proposed the direct theory of reference and what it means to “ground in references”; adopted many Peirce arguments without attribution
  • Ferdinand de Saussure (1857 – 1913) – also proposed an alternative view to Peirce of semiotics, one grounded in sociology and linguistics
  • John Rogers Searle (1932 – ) – argues that consciousness is a real physical process in the brain and is subjective; has argued against strong AI (artificial intelligence)
  • Alfred Tarski (1901 – 1983) – analytic philosopher focused on definitions of models and truth; great admirer of Peirce; associated with model theory, model-theoretic semantics
  • Ludwig Josef Johann Wittgenstein (1889 – 1951) – he disavowed his earlier work, arguing that philosophy needed to be grounded in ordinary language, recognzing that the meaning of words is dependent on context, usage, and grammar.
Also, Umberto Eco has been a noted proponent and popularizer of semiotics.
[2] As any practitioner ultimately notes, standards development is a messy, lengthy and trying process. Not all individuals can handle the messiness and polemics involved. Personally, I prefer to try to write cogent articles on specific issues of interest, and then leave it to others to slug it out in the back rooms of standards making. Where the process works well, standards get created that are accepted and adopted. Where the process does not work well, the standards are not embraced as exhibited by real-world use.
[3] Tim Berners-Lee, 2007. What Do HTTP URIs Identify?
This article does not discuss the other sub-category of URIs, URNs (for names). URNs may refer to any standard naming scheme (such as ISBNs for books) and has no direct bearing on any network access protocol, as do URLs and URIs when they are referenceable. Further, URNs are little used in practice.
[4] Kendall Clark was one of the first to question “resource” and other identity ambiguities, noting the tautology between URI and resource as “anything that has identity.” See Kendall Clark, 2002. “Identity Crisis,” in XML.com, Sept 11 2002; see http://www.xml.com/pub/a/2002/09/11/deviant.html. From the topic map community, one notable contribution was from Steve Pepper and Sylvia Schwab, 2003. “Curing the Web’s Identity Crisis,” found at : http://www.ontopia.net/topicmaps/materials/identitycrisis.html.
[5] Sandro Hawke, 2003. Disambiguating RDF Identifiers. W3C, January 2003. See http://www.w3.org/2002/12/rdf-identifiers/.
[6] The issue was framed as what is the proper “range” for HTTP referrals and was also the 14th major TAG issue recorded, hence the name. See further the httpRange-14 Webography .
[7] See W3C, “httpRange-14: What is the range of the HTTP dereference function?”; see http://www.w3.org/2001/tag/issues.html#httpRange-14.
[9] Leo Sauermann and Richard Cyganiak, eds., 2008. Cool URIs for the Semantic Web, W3C Interest Group Note, December 3, 2008. See http://www.w3.org/TR/cooluris/.
[10] Ian Davis, 2010. Is 303 Really Necessary? Blog post, November 2010, accessed 20 January 2012. (See http://blog.iandavis.com/2010/11/04/is-303-really-necessary/.) A considerable thread resulted from this post; see http://markmail.org/thread/mkoc5kxll6bbjbxk.
[11] See first Harry Halpin, 2006. “Identity, Reference and Meaning on the Web,” presented at WWW 2006, May 23, 2006. See http://www.ibiblio.org/hhalpin/irw2006/hhalpin.pdf. This was then followed up with greater elaboration by Patrick J. Hayes and Harry Halpin, 2007. “In Defense of Amibiguity,” http://www.ibiblio.org/hhalpin/homepage/publications/indefenseofambiguity.html.
[12] Ed Summers, 2010. Linking Things and Common Sense, blog post of July 7, 2010. See http://inkdroid.org/journal/2010/07/07/linking-things-and-common-sense/.
[13] Xiaoshu Wang, 2007. URI Identity and Web Architecture Revisited, Word document posted on posterous.com, November 2007. (Former Web documents have been removed.)
[14] David Booth, 2006. “URIs and the Myth of Resource Identity,” see http://dbooth.org/2006/identity/.
[15] See Larry Masinter, 2012. “The ‘tdb’ and ‘duri’ URI Schemes, Based on Dated URIs,” 10th version, IETF Network Working Group Internet-Draft,January 12, 2012. See http://tools.ietf.org/html/draft-masinter-dated-uri-10.
[16] Jonathan Rees has been the scribe and author for many of the background documents related to Issue 57. A recent mailing list entry provides pointers to four relevant documents in this entire discussion. See Jonathan A Rees, 2012. Guide to ISSUE-57 (httpRange-14) document suiteJanuary, 21, 2012.
[17] At least twenty domain names, led by insure.com, have sold for more the $2 million each; see this Wikipedia listing.
[18] In the wonderful movie, The Gods, They Must be Crazy, Bushmen in the Kalahari Desert one day find an unbroken glass Coke bottle that had been thrown out of an airplane. Initially, this strange artifact seems to be another boon from the gods, and the Bushmen find many uses for it. But unlike anything that they have had before, there is only one bottle to go around. This creates jealousy, envy, anger, hatred, even violence. The protagonist, Xi, decides that the bottle is an evil thing and must be thrown off of the edge of the world. The hilarity of the movie comes from that premise and Xi’s encounters with the modern world as he pursues his quest with the magic bottle.

[19] Wang [13]rhetorically asked which of the following things would be categorized as an “information resource”:

  1. A book
  2. A clock
  3. The clock on the wall of my bedroom
  4. A gene
  5. The sequence of a gene
  6. A software
  7. A service
  8. A namespace
  9. An ontology
  10. A language
  11. A number
  12. A concept, such as Dublin Core’s creator.

See the 2007 thread on this issue, mostly by Sean Palmer and Noah Mendelsohn, the latter aknowledging that various experts may only agree on 85% of the items.

[20] See further Catherine Legg, 2010. “Pragmaticsm on the Semantic Web,” in Bergman, M., Paavola, S., Pietarinen, A.-V., & Rydenfelt, H. eds., Ideas in Action: Proceedings of the Applying Peirce Conference, pp. 173–188. Nordic Studies in Pragmatism 1. Helsinki: Nordic Pragmatism Network. See http://www.nordprag.org/nsp/1/Legg.pdf.
[21] Charles Sanders Peirce, 1894. “What is in a Sign?”, see http://www.iupui.edu/~peirce/ep/ep2/ep2book/ch02/ep2ch2.htm.
[22] The figures in particular are from John F. Sowa, 2000. “Ontology, Metadata, and Semiotics,” presented at ICCS 2000 in Darmstadt, Germany, on August 14, 2000; published in B. Ganter & G. W. Mineau, eds., Conceptual Structures: Logical, Linguistic, and Computational Issues, Lecture Notes in AI #1867, Springer-Verlag, Berlin, 2000, pp. 55-81. May be found at http://www.jfsowa.com/ontology/ontometa.htm. Also see John F. Sowa, 2006. “Peirce’s Contributions to the 21st Century,” presented at International Conference on Conceptual Structures, Aalborg, Denmark, July 17, 2006. See http://www.jfsowa.com/pubs/csp21st.pdf.
[23] C.K. Ogden and I. A. Richards, 1923. The Meaning of Meaning, Harcourt, Brace, and World, New York, 8th edition 1946.

Posted by AI3's author, Mike Bergman Posted on January 24, 2012 at 9:52 am in Adaptive Information, Linked Data, Semantic Web | Comments (9)
The URI link reference to this post is: http://www.mkbergman.com/994/give-me-a-sign-what-do-things-mean-on-the-semantic-web/
The URI to trackback this post is: http://www.mkbergman.com/994/give-me-a-sign-what-do-things-mean-on-the-semantic-web/trackback/
Posted:June 2, 2011

Schema.orgContrary to Some Views, Google and Co.’s Microdata Effort will Also Boost RDF

In my opinion, perhaps the most important event for the structured Web since RDF was released a dozen years ago was today’s joint announcement by the search engine triumvirate of Google, Bing and Yahoo! releasing Schema.org. Schema.org is a vendor specification for nearly 300 mini-schema (or structured record definitions) that can be used to tag information in Web pages. These schema are organized into a clean little hierarchy and cover many of the leading things — from organizations to people to products and creative works — that can be written about and characterized on the Web.

These schema specifications are based on the microdata standard presently under review as part of the pending HTML5 specification. Microdata are set record descriptions of key-value pair attributes that can be embedded into the HTML Web page language. These microdata schema are similar to microformats, but broader in coverage and extensible. Microdata is also simpler than RDFa, another W3C specification that the Schema.org organizers call “. . . extensible and very expressive, but the substantial complexity of the language has contributed to slower adoption.”

Is the Initiative a Slap in RDF’s Face?

Various forums have been alive with howls and questions from many RDF and RDFa advocates that this initiative negates years of effort behind those formats. Yet I and my company, Structured Dynamics, which base our entire technology approach on semantics and RDF, do not see this announcement as a threat or rejection. What gives; what is the difference in perspective?

In our view, RDF and its triple representations in its data model, is the simplest and most expressive means to represent any data or any data relationship. As such, RDF, and its language extensions such as OWL and ontologies, provide a robust and flexible canonical data model for capturing any extant data or schema. No matter what the native form of the source information, we can boil it down to RDF and inter-relate it to any other information. It is for these reasons (and others) we have frequently termed RDF as the universal data solvent.

But, simple records and simple data need not be encumbered with the complexity of RDF. We have long argued for the importance of naive data structs. Many of these are simple key-value pairs where the subject is implied. The so-called little structured data records in Wikipedia, called infoboxes, are of this form. JSON and many simple data formats also have cleaner data formats.

The basic fact that RDF provides a universal data model for any kind of native data does not necessarily translate into its use as the actual data exchange format. Rather, winning data exchange formats are those that can be easily understood, easily expressed and therefore widely used. I think there is a real prospect that microdata, ready for ingest and expression by the Web’s leading search engines, may represent a real sea change in the availability and expression of structured data on the Web.

More structure — not less — is the real fuel that will promote greater adoption of RDF when it comes time to interoperate that data. The RDF community should rejoice that more structure will be coming to the Web from Google et al.’s announcement. We should also soon see an explosion of tools and utilities and services that make it easy to automatically add such structure to Web pages via single clicks. Then, once this structure is available, watch out!

So, while the backers of Schema.org also announced their continued support for microformats and RDFa as they presently exist, I rather suspect today’s announcement represents a denouement for these alternative formats. Though these formats may be creatively destroyed, I think the effect on RDF itself will be a profound and significant boost. I foresee clarity coming to the marketplace regarding RDF’s role:  as a canonical means for expressing data of any form, and not necessarily as a data exchange format.

The Initiative is No Surprise

This initiative, led by Google, should be no surprise. Google is the registered agent for the Schema.org Web site and has been the key proponent of microdata via its support of Ian Hickson in the WhatWG and HTML5 work groups. As I stated a couple of years back, Google has also not hidden its interests in structured data. Practically daily we see more structured data appear in Google search results and it has maintained a very active program in structured data extraction from text and tables for some years.

Google and its search engine partners recognize that search needs are evolving from keyword retrievals to structure, relationships, and filtered, targeted results. Those advances come from structure — as well as the semantic relationships between things that something like the Schema.org begins to represent.

Many within the W3C and elsewhere questioned why Google was pushing microdata when there were competing options such as microformats or RDFa (or even earlier variants). Of course, like Microsoft of a decade earlier, some ascribed Google’s microdata advocacy as arising from commercial interests or clout in advertising alone. Of course Google has an economic interest in the growth and usefulness of the Web. But I do not believe its advocacy to be premised on clout or “my way or the highway.”

Google and the search engine triumvirate understand well — much better than many of the researchers and academics that dominate mailing list discussions — that use and adoption trump elegance and sophistication. When one deconstructs the design of microdata and the nearly 300 schema now released behind it, I think the pragmatic observer can only come to one conclusion: Job well done!

Why This is Exciting

I have been a fervent RDF advocate for nearly a decade and have also been a vocal proponent of the structured Web as a necessary stepping stone to the semantic Web. In fact, here is a repeat of a diagram I have used many times over the past 5 years:

Transition in Web Structure
Document Web Structured Web
Semantic Web
Linked Data
  • Document-centric
  • Document resources
  • Unstructured data and semi-structured data
  • HTML
  • URL-centric
  • circa 1993
  • Data-centric
  • Structured data
  • Semi-structured data and structured data
  • XML, JSON, RDF, etc
  • URI-centric
  • circa 2003
  • Data-centric
  • Linked data
  • Semi-structured data and structured data
  • RDF, RDF-S
  • URI-centric
  • circa 2007
  • Data-centric
  • Linked data
  • Semi-structured data and structured data
  • RDF, RDF-S, OWL
  • URI-centric
  • circa ???

When one looks at the schema of schema that accompany today’s announcement, it is really clear just how encompassing and important these instant standards will become:

DataType

Thing

Intangible

CreativeWork

Event

Organization

LocalBusiness

AnimalShelter
AutomotiveBusiness

ChildCare
DryCleaningOrLaundry
EmergencyService

EmploymentAgency
EntertainmentBusiness

FinancialService

FoodEstablishment

GovernmentOffice

HealthAndBeautyBusiness

HomeAndConstructionBusiness

InternetCafe
Library
LodgingBusiness

MedicalOrganization

ProfessionalService

RadioStation
RealEstateAgent
RecyclingCenter
SelfStorage
ShoppingCenter
SportsActivityLocation

Store

TelevisionStation
TouristInformationCenter
TravelAgency

NGO

SportsTeam

Organization (con’t)

Person
Place

Product

Today’s announcement is the best news I have heard in years regarding the structured Web, RDF, and the semantic Web. This announcement is — I believe — the signal event of the structured Web. With regard to my longstanding diagram above, I can go to bed tonight knowing we have now crossed the threshold into the semantic Web.

Posted by AI3's author, Mike Bergman Posted on June 2, 2011 at 8:57 pm in Adaptive Information, Structured Web | Comments (7)
The URI link reference to this post is: http://www.mkbergman.com/962/structured-web-gets-massive-boost/
The URI to trackback this post is: http://www.mkbergman.com/962/structured-web-gets-massive-boost/trackback/
Posted:May 10, 2011

Deciphering Information Assets Exposing $4.7 Trillion Annually in Undervalued Information

Something strange began to happen with company valuations beginning twenty to thirty years ago. Book values increasingly began to diverge — go lower — from stock prices or acquisition prices. Between 1982 and 1992 the ratio of book value to market value decreased from 62% to 38% for public US companies [1]. The why of this mystery has largely been solved, but what to do about it has not. Significantly, semantic technologies and approaches offer both a rationale and an imperative for how to get the enterprises’ books back in order. In the process, semantics may also provide a basis for more productive management and increased valuations for enterprises as well.

The mystery of diverging value resides in the importance of information in an information economy. Unlike the historical and traditional ways of measuring a company’s assets — based on the tangible factors of labor, capital, land and equipment — information is an intangible asset. As such, it is harder to see, understand and evaluate than other assets. Conventionally, and still the more common accounting practice, intangible assets are divided into goodwill, legal (intellectual property and trade secrets) and competitive (know-how) intangibles. But — given that intangibles now equal or exceed the value of tangible assets in advanced economies — we will focus instead on the information component of these assets.

As used herein, information is taken to be any data that is presented in a form useful to recipients (as contrasted to the more technical definition of Shannon and Weaver [2]). While it is true that the there is always a question of whether the collection or development of information is a cost or represents an investment, that “information” is of growing importance and value to the enterprise is certain.

The importance of this information focus can be demonstrated by two telling facts, which I elaborate below. First, only five to seven percent of existing information is adequately used by most enterprises. And, second, the global value of this information amounts to perhaps a range of $2.0 trillion to $7.4 trillion annually (yes, trillions with a T)! It is frankly unbelievable that assets of such enormous magnitude are so poorly understood, exploited or managed.

Amongst all corporate resources and assets, information is surely the least understood and certainly the least managed. We value what we measure, and measure what we value. To say that we little measure information — its generation, its use (or lack thereof) or its value — means we are attempting to manage our enterprises with one eye closed and one arm tied behind our backs. Semantic approaches offer us one way, perhaps the best way, to bring understanding to this asset and then to leverage its value.

The Seven “Laws” of Information

More than a decade ago Moody and Walsh put forward a seminal paper on the seven “laws” of information [3]. Unlike other assets, information has some unique characteristics that make understanding its importance and valuing it much more difficult than other assets. Since I think it a shame that this excellent paper has received little attention and few citations, let me devote some space to covering these “laws”.

Like traditional factors of production — land, labor, capital — it is critical to understand the nature of this asset of “information”. As the laws below make clear, the nature of “information” is totally unique with respect to other factors of production. Note I have taken some liberty and done some updating on the wording and emphasis of the Moody and Walsh “laws” to accommodate recent learnings and understandings.

Law #1: Information Is (Infinitely) Shareable

Information is not friable and can not be depleted. Using or consuming it has no direct affect on others using or consuming it and only using portions of it does not undermine the whole of it. Using it does not cause a degradation or loss of function from its original state. Indeed, information is actually not “consumed” at all (in the conventional sense of the term); rather, it is “shared”. And, absent other barriers, information can be shared infinitely. The access and
use to information on the Web demonstrates this truth daily.

Thus, perhaps the most salient characteristic of information as an asset is that it can be shared between any number of people, business areas and organizations without loss of value to any party (absent the importance of confidentiality or secrecy, which is another information factor altogether). The sharability or maintenance of value irrespective of use makes information quite different to how other assets behave. There is no dilution from use. As Moody and Walsh put it, “from the firm’s perspective, value is therefore cumulative rather than apportioned across different users.”

In practice, however, this very uniqueness is also a cause of other organizational challenges. Both personal and institutional barriers get erected to limit sharing since “knowledge is power.” One perverse effect of information hoarding or lack of institutional support for sharing is to force the development anew of similar information. When not shared, existing information becomes a cost, and one that can get duplicated many times over.

Law #2: The Value of Information Increases With Use

Most resources degrade with use, such as equipment wearing out. In contrast, the per unit value of information increases with use. The major cost of information is in its capture, storage and maintenance. The actual variable costs of using the information (particularly digital information) is, in essence, zero. Thus, with greater use, the per unit cost of information drops.

There is a corollary to this that also goes to the heart of the question of information as an asset. From an accounting point of view, something can only be an asset if it provides future economic value. If information is not used, it cannot possibly result in such benefits and is therefore not an asset. Unused information is really a liability, because no value is extracted from it. In such cases the costs of capture, storage and maintenance are incurred, but with no realized
value. Without use, information is solely a cost to the enterprise.

The additional corollary is that awareness of the information’s existence is an essential requirement in order to obtain this value. As Moody and Walsh state, “information is at its highest ‘potential’ when everyone in the organization knows where it is, has access to it and knows how to use it. Information is at its lowest ‘potential’ when people don’t even know it is there.”

A still further corollary is the importance of information literacy. Awareness of information without an understanding of where it fits or how to take advantage of it also means its value is hidden to potential users. Thus, in addition to awareness, training and documentation are important factors to help ensure adequate use. Both of these factors
may seem like additional costs to the enterprise beyond capture, storage and maintenance, but — without them — no or little value will be leveraged and the information will remain a sunk cost.

Law #3: Information is Perishable

Like most other assets, the value of information tends to depreciate over time [4]. Some information has a short shelf life (such as Web visitations); other has a long shelf life (patents, contracts and many trade secrets). Proper valuation of information should take into account such differences in operational life, analysis or decision life, and statutory life. Operational shelf life tends to be the shortest.

In these regards, information is not too dissimilar from other asset types. The most important point is to be cognizant of use and shelf differences amongst different kinds of information. This consideration is also traded off against the declining costs of digital information storage.

Law #4: The Value of Information Increases With Accuracy

A standard dictum is that the value of information increases with accuracy. The caveat, however, is that some information, because it is not operationally dependent or critical to the strategic interests of the firm, actually can become a cost when capture costs exceed value. Understanding such Pareto principles is an important criterion in evaluating information approaches. Generally, information closest to the transactional or business purpose of the organization will demand higher accuracy.

Such statements may sound like platitudes — and are — in the absence of an understanding of information dependencies within the firm. But, when certain kinds of information are critical to the enterprise, it is just as important to know the accuracy of the information feeding that “engine” as it is for oil changes or maintenance schedules for physical engines. Thus an understanding of accuracy requirements in information should be a deliberate management focus for critical business functions. It is the rare firm that attends to such imperatives today.

Law #5: The Value of Information Increases in Combination

A unique contribution from semantic approaches — and perhaps the one resulting in the highest valuation benefit — arises from the increased value of connecting the information. We have come to understand this intimately as the “network effect” from interconnected nodes on a network. It also arises when existing information is connected as well.

Today’s enterprise information environment is often described by many as unconnected “silos”. Scattered databases and spreadsheets and other information repositories litter the information landscape. Not only are these sources unconnected and isolated, but they also may describe similar information in different and inconsistent ways.

As I have described previously in The Law of Linked Data [5], existing information can act as nodes that — once connected to one another — tend to produce a similar network effect to what physical networks exhibit with increasing numbers of users. Of course, the nature of the information that is being connected and its centrality to the mission of the enterprise will greatly affect the value of new connections. But, based on evidence to date, the value of information appears to go up somewhere between a quadratic and exponential function for the number of new connections. This value is especially evident in know-how and competitive areas.

Law #6: More Is Not Necessarily Better

Information overload is a well-known problem. On the other hand, lack of appropriate information is also a compelling problem. The question of information is thus one of relevancy. Too much irrelevant information is a bad thing, as is too little relevant information.

These observations lead to two use considerations. First, means to understand and focus information capture on relevant information is critical. And, second, information management systems should be purposefully designed with user interfaces for easy filtering of irrelevant information.

The latter point sounds straightforward, but, in actuality, requires a semantic underpinning to the enterprise’s information assets. This requirement is because relevancy is in the eye of the beholder, and different users have different terms, perspectives, and world views by which information evaluation occurs. In order for useful filtering, information must be presented in similar terms and perspectives relevant to those users. Since multiple studies affirm that information decision-makers seek more information beyond their overload points [3], it is thus more useful to provide relevant access and filtering methods that can be tailored by user rather than “top down” information restrictions.

Law #7: Information is Self-propagating

With access and connections, information tends to beget more information. This propagation results from summations, analysis, unique combinations and other ways that basic datum get recombined into new datum. Thus, while the first law noted that information can not be consumed (or depleted) by virtue of its use, we can also say that information tends to reproduce and expand itself via use and inspection.

Indeed, knowledge itself is the result of how information in its native state can be combined and re-organized to derive new insights. From a valuation standpoint, it is this very understanding that leads to such things as competitive intelligence or new know-how. In combination with insights from connections, this propagating factor of information is the other leading source of intangible asset valuations.

This law also points to the fact that information per se is not a scarce resource. (Though its availability may be scarce.) Once available, techniques like data mining, analysis, visualization and so forth can be rich sources for generating new information from existing holdings of data.

Information as an Asset and How to Value

These “laws” — or perspectives — help to frame the imperatives for how to judge information as an asset and its resulting value. The methodological and conceptual issues of how to explicitly account for information on a company’s books are, of course, matters best left to economists and professional accountants. With the growing share of information in relation to intangible assets, this would appear to be a matter of great importance to national policy. Accounting for R&D efforts as an asset versus a cost, for example, has been estimated to add on the order of 11 percent to US national GDP estimates [9].

The mere generation of information is not necessarily an asset, as the “laws” above indicate. Some of the information has no value and some indeed represents a net sunk cost. What we can say, however, is that valuable information that is created by the enterprise but remains unused or is duplicated means that what was potentially an asset has now been turned into a cost — sometimes a cost repeated many-fold.

Information that is used is an asset, intangible or not. Here, depending on the nature of the information and its use, it can be valued on the basis of cost (historical cost or what it cost to develop it), market value (what others will pay for it), or utility (what is its present value as benefits accrue into the future). Traditionally the historical cost method has been applied to information. Yet, since information can both be sold and still retained by the organization, it may have both market value and utility value, with its total value being the sum.

In looking at these factors, Moody and Walsh propose a number of new guidelines in keeping with the “laws” noted above [3]:

  • Operational information should be measured as the cost of collection using data entry costs
  • Management information should be valued based on what it cost to extract the data from operational systems
  • Redundant data should be considered to have zero value (Law #1)
  • Unused data should be considered to have zero value (Law #2)
  • The number of users and number of accesses to the data should be used to multiply the value of the information (Law #2). When information is used for the first time, it should be valued at its cost of collection; subsequent uses should add to this value (perhaps on a depreciated basis; see below)
  • The value of information should be depreciated based on its “shelf life” (Law #3)
  • The value of information should be discounted by its accuracy relative to what is considered to be acceptable (Law #4)
  • And, as an added factor, information that is effectively linked or combined should have its value multiplied (Law #5), though the actual multiplier may be uncertain [5].

The net result of thinking about information in this more purposeful way is to encourage more accurate valuation methods, and to provide incentives for more use and re-use, particularly in combined ways. Such methods can also help distinguish what information is of more value to the organization, and therefore worthy of more attention and investment.

The Growing Importance of Intangible Information

The emerging discrepancy between market capitalizations and book values began to get concerted academic attention in the 1990s. To be sure, perceptions by the market and of future earnings potential can always  color these differences. The simple occurrence of a discrepancy is not itself proof of erroneous or inaccurate valuations. (And, the corollary is that the degree of the discrepancy is not sufficient alone to estimate the intangible asset “gap”, a logical error made by many proponents.) But, the fact that these discrepancies had been growing and appeared to be based (in part) on structural changes linked to intangibles was creating attention.

Leonard Nakamura, an economist with the Federal Reserve Board in Philadelphia, published a working paper in 2001 entitled, “What is the U.S. Gross investment in Intangibles?  (At Least) One Trillion Dollars a Year!” [6]. This was one of the first attempts to measure intangible investments, which he defined as private expenditures on assets that are intangible and necessary to the creation and sale of new or improved products and processes, including designs, software, blueprints, ideas, artistic expressions, recipes, and the like. Nakamura acknowledged his work as being preliminary. But he did find direct and indirect empirical evidence to show that US private firms were investing at least $1 trillion annually (as of 2000, the basis year for the data) in intangible assets.  Private expenditures, labor and corporate operating margins were the three measurement methods.  The study also suggested that the capital stock of intangibles in the US has an equilibrium market value of at least $5 trillion.

Another key group — Carol Corrado, Charles Hulten, and Daniel Sichel, known as “CHS” across their many studies — also began to systematically evaluate the extent and basis for intangible assets and its discrepancy [7].  They estimated that spending on long-lasting knowledge capital — not just intangibles broadly — grew relative to other major components of aggregate demand during the 1990s. CHS was the first to show that by the turn of the millenium that fixed US investment in intangibles was at least as large as business investment in traditional, tangible capital.

By later in the decade, Nakamura was able to gather and analyze time series data that showed the steady increase in the contributions of intangibles [8]:

One can see the cross-over point late in the decade. Investment in intangibles he now estimates to be on the order of 8% to 10% of GDP annually in the US.

Roughly at the same time the National Academies in the US was commissioned to investigate the policy questions of intangible assets. The resulting major study [9] contains much relevant information. But it, too, contained an update by CHS on their slightly different approach to analyzing the growing role of intangible assets:

This CHS analysis shows similar trends to what Nakamura found, though the degree of intangible contributions is estimated as higher (~14% of annual GDP today), with investments in intangibles exceeding tangible assets somewhat earlier.

Surveys of more than 5,000 companies in 25 companies confirmed these trends from a different perspective, and also showed that most of these assets did not get reflected in financial statements. A large portion of this value was due to “brands” and other market intangibles [10]. The total “undisclosed” portion appeared to equal or exceed total
reported assets. Figures for the US indicated there might be a cumulative basis of intangible assets of $9.2 trillion [11].

In parallel, these groups and others began to decompose the intangible asset growth by country, sector, or asset type. The specific component of “information” received a great deal of attention. Uday Apte, Uday Karmarkar and Hiranya Nath, in particular, conducted a couple of important studies during this decade [12,13]. For example, they found nearly two-thirds of recent US GDP was due to information or knowledge industry contributions, a percentage that had been growing over time. They also found that a secondary sector of information internal to firms itself constituted well over 40% of the information economy, or some 28% of the entire economy. So the information activities internal to organizations and institutions represent a very large part of the economy.

The specific components that can constitute the informational portion of intangible assets has also been looked at by many investigators, importantly including key accounting groups. FASB, for example, has specific guidance on treatment of intangible assets in SFAS 141 [14]. Two-thirds of the 90 specific intangible items listed by the American Institute of Certified Public Accountants are directly related to information (as opposed to contracts, brands or goodwill), as shown in [15]. There has also been some good analysis by CHS on breakdowns by intangible assets categories [16]. There are also considerable differences by country on various aspects of these measures (for example, [10]). For example, according to OECD figures from 2002, expenditures for knowledge (R&D, education and software) ranged from nearly 7 percent (Sweden) to below 2 percent (Greece) in OECD countries, with the average of about 4 percent and the US at over 6 percent [17].

. . . Plus Too Much Information Goes Unused

The common view is that a typical organization only uses 5 to 7 percent of the information it already has on hand [18], and 20% to 25% of a knowledge worker’s time is spent simply trying to find information [19]. To probe these issues more deeply, I began a series of analyses in 2004 looking at how much money was being spent on preparing documents within US companies, and how much of that investment was being wasted or not re-used [20]. One key finding from that study was that the information within documents in the US represent about a third of total gross domestic product, or an amount equal at the time of the study to about $3.3 trillion annually (in 2010 figures, that would be closer to $4.7 trillion). This level of investment is consistent with the results of Apte et al. and others as noted above.

However, for various reasons — mostly due to lack of awareness and re-use — some 25% of those trillions of dollar spent annually on document creation costs are wasted. If we could just find the information and re-use it, massive benefits could accrue, as these breakdowns in key areas show:

U.S. FIRMS $ Million %
Cost to Create Documents $3,261,091
Benefits to Finding Missed or Overlooked Documents $489,164 63%
Benefits to Improved Document Access $81,360 10%
Benefits of Re-finding Web Documents $32,967 4%
Benefits of Proposal Preparation and Wins $6,798 1%
Benefits of Paperwork Requirements and Compliance $119,868 15%
Benefits of Reducing Unauthorized Disclosures $51,187 7%
Total Annual Benefits $781,314 100%
PER LARGE FIRM $ Million
Cost to Create Documents $955.6
Benefits to Finding Missed or Overlooked Documents $143.3
Benefits to Improving Document Access $23.8
Benefits of Re-finding Web Documents $9.7
Benefits of Proposal Preparation and Wins $2.0
Benefits of Paperwork Requirements and Compliance $35.1
Benefits of Reducing Unauthorized Disclosures $15.0
Total Annual Benefits $229.0

Table. Mid-range Estimates for the Annual Value of Documents, U.S. Firms, 2002 [20]

The total benefit from improved document access and use to the U.S economy is on the order of 8% of GDP. For the 1,000 largest U.S. firms, benefits from these improvements can approach nearly $250 million annually per firm (2002 basis). About three-quarters of these benefits arise from not re-creating the intellectual capital already invested in prior document creation. About one-quarter of the benefits are due to reduced regulatory non-compliance or paperwork, or better competitiveness in obtaining solicited grants and contracts.

This overall value of document use and creation is quite in line with the analyses of intangible assets noted above, and which arose from totally different analytical bases and data. This triangulation brings confidence that true trends in the growing importance of information have been identified.

How Big is the Information Asset Gap?

These various estimates can now be combined to provide an assessment of just how large the “gap” is for the overlooked accounting and use of information assets:

GDP ($T) Intangible % Info Contrib % Info Assets ($T) Unused Info ($T) Total ($T)
Lo Hi Lo Hi Lo Hi Lo Hi Lo Hi
US $14.72 9% 14% 33% 67% $0.44 $1.38 $0.30 $1.21 $0.74 $2.60
European Union $15.25 8% 12% 33% 50% $0.40 $0.92 $0.31 $1.26 $0.72 $2.17
Remaining Advanced $10.17 8% 12% 33% 50% $0.27 $0.61 $0.21 $0.84 $0.48 $1.45
Rest of World $34.32 2% 6% 10% 25% $0.07 $0.51 $0.00 $0.71 $0.07 $1.22
Total $74.46 $1.18 $3.42 $0.83 $4.02 $2.00 $7.44
Notes (see endnotes) [21] [22] [23]

Depending, these estimates can either be viewed as being too optimistic about the importance of information assets [25] or too conservative [26]. The breadth of the ranges of these values is itself an expression of the uncertainty in the numbers and the analysis.

The analysis shows that, globally, the value of unused and unaccounted information assets may be on the order of  $2.0 trillion to $7.4 trillion annually, with a mid-range value of $4.7 trillion. Even considering uncertainties, these are huge, huge numbers by any account. For the US alone, this range is $750 billion to $2.6 trillion annually. The analysis from the prior studies [20] would strongly suggest the higher end of this range is more likely than the lower. Similarly large gaps likely occur within the European Union and within other advanced nations. For individual firms, depending on size, the benefits of understanding and closing these gaps can readily be measured in the millions to billions [27].

At the high end, these estimates suggest that perhaps as much as 10% of global expenditures is wasted and unaccounted for due to information-related activities. This is roughly equivalent to adding a half of the US economy to the global picture.

In the concluding section, we touch on why such huge holes may appear in the world’s financial books. Clearly, though, even with uncertain and heroic assumptions, the magnitude of this gap is huge, with compelling needs to understand and close it as soon as possible.

The Relationship to Semantic Technologies

The seven Moody and Walsh information “laws” provide the clues to the reasons why we are not properly accounting for information and why we inadequately use it:

  • We don’t know what information we have and can not find it
  • What we have we don’t connect
  • We misallocate resources for generating, capturing and storing information, because we don’t understand its value and potential
  • We don’t manage the use of information or its re-use
  • We duplicate efforts
  • We inadequately leverage what information we have and miss valuable (that is, can be “valuated”) insights that could be gained.

Fundamentally, because information is not understood in our bones as central to the well-being of our enterprises, we continue to view the generation, capture and maintenance of information as a “cost” and not an “asset”.

I have maintained for some time an interactive information timeline [28] that attempts to encompass the entire human history of information innovations. For tens of thousands of years steady — yet slow — progress in the ways to express and manage information can be seen in this timeline. But, then, beginning with electricity and then digitization, the pace of innovation explodes.

The same timeframe that sees the importance of intangible assets appear on national and firm accounts is when we see the full digitization of information and its ability to be communicated and linked over digital networks. A very insightful figure by Rama Hoetzlein for his thesis in 2007, which I have modified and enhanced, captures this evolution with some estimated dates as is shown below (click to expand) [29]:

The first insight this figure provides is that all forms of information are now available in digital form. This includes unstructured (images and documents), semi-structured (mark-up and “tagged” information) and structured (database and spreadsheet) information. This information can now be stored and communicated over digital networks with broadly accepted protocols.

But the most salient insight is that we now have the means through semantic technologies and approaches to interrelate all of this information together. Tagging and extraction methods enable us to generate metadata for unstructured documents and content. Data models based on predicate logic and semantic logics give us the flexible means to express the relationships and connections between information. And all of this can be stored and manipulated through graph-based datastores and languages such that we can draw inferences and gain insights. Plus, since all of this is now accessible via the Web and browsers, virtually any user can access, use and leverage this information.

This figure and its dates not only shows where we have come as a species in our use and sophistication with information, but how we need to bring it all together using semantics to complete our transition to a knowledge economy.

The very same metadata and semantic tagging capabilities that enable us to interrelate the information itself also provides the techniques by which we can monitor and track usage and provenance. It is through these additional semantic methods that we can finally begin to gain insight as to what information is of what value and to whom. Tapping this information will complete the circle for how we can also begin to properly valuate and then manage and optimize our information assets.

Conclusion

With our transition to an information economy, we now see that intangible assets exceed the value of tangible ones. We see that the information component of these intangibles represent one-third to two-thirds of these intangibles. In other words, information makes up from 17% to more than one-third of an individual firm’s value in modern economies. Further, we see that at least 25% of firm expenditures on information is wasted, keeping it as a cost and negating its value as an asset.

The “factories” of the modern information economy no longer produce pins with the fixed inputs of labor and capital as in the time of Adam Smith. They rather produce information and knowledge and know-how. Yet our management and accounting systems seem fixed in the techniques of yesteryear. The quaint idea of total factor productivity as a “residual” merely belies our ignorance about the causes of economic growth and firm value. These are issues that should rightly occupy the attention of practitioners in the disciplines of accounting and management.

Why industrial-era accounting methods have been maintained in the present information age is for students of corporate power politics to debate. It should suffice to remind us that when industrialization induced a shift from the extraction of funds from feudal land possessions to earning profits on invested capital, most of the assumptions about how to measure performance had to change. When the expenses for acquiring information capabilities cease to be an arbitrary budget allocation and become the means for gaining Knowledge Capital, much of what is presently accepted as management of information will have to shift from a largely technological view of efficiency to an asset management perspective [30].

Accounting methods grounded in the early 1800s that are premised on only capital assets as the means to increase the productivity of labor no longer work. Our engines of innovation are not physical devices, but ideas, innovation and knowledge; in short, information. Capable executives recognize these trends, but have yet to change management practices to address them [31].

As managers and executives of firms we need not await wholesale modernization of accounting practices to begin to make a difference. The first step is to understand the role, use and importance of information to our organizations. Looking clearly at the seven information “laws” and what that means about tracking and monitoring is an immediate way to take this step. The second step is to understand and evaluate seriously the prospects for semantic approaches to make a difference today.

We have now sufficiently climbed the data federation pyramid [32] to where all of our information assets are digital; we have network protocols to link it; we have natural language and extraction techniques for making documents first-class citizens along side structured data; and we have logical data models and sound semantic technologies for tying it all together.

We need to reorganize our “factory” floors around these principles, just as prime movers and unit electric drives altered our factories of the past. We need to reorganize and re-think our work processes and what we measure and value to compete in the 21st century. It is time to treat information as seriously as it has become an integral part of our enterprises. Semantic technologies and approaches provide just the path to do so.


[1] Baruch Lev and Jürgen H. Daum, 2003. “Intangible Assets and the Need for a Holistic and More Future-oriented Approach to Enterprise Management and Corporate Reporting,” prepared for the 2003 PMA Intellectual Capital Symposium, 2nd October 2003, Cranfield Management Development Centre, Cranfield University, UK; see http://www.juergendaum.de/articles/pma_ic_symp_jdaum_final.pdf.
[2] Claude E. Shannon and Warren Weaver, 1949. The Mathematical Theory of Communication. The University of Illinois Press, Urbana, Illinois, 1949. ISBN 0-252-72548-4.
[3] Daniel Moody and Peter Walsh, 1999. “Measuring The Value Of Information: An Asset Valuation Approach,” paper presented at the Seventh European Conference on Information Systems (ECIS’99), Copenhagen Business School, Frederiksberg, Denmark, 23-25 June, 1999. See http://wwwinfo.deis.unical.it/zumpano/2004-2005/PSI/lezione2/ValueOfInformation.pdf. A precursor paper that is also quite helpful and cited much in Moody and Walsh is R. Glazer, 199. “Measuring the Value of Information: The Information Intensive Organisation”, IBM Systems Journal, Vol 32, No 1, 1993.
[4] Some trade secrets could buck this trend if the value of the underlying enterprise that relies on them increases.
[5] M.K. Bergman, 2009. “The Law of Linked Data,” post in AI3:::Adaptive Information blog, October 11, 2009. See http://www.mkbergman.com/837/the-law-of-linked-data/.
[6]  Leonard Nakamura, 2001. What is the U.S. Gross Investment in Intangibles?  (At Least) One Trillion Dollars a Year!,
Working Paper No. 01-15, Federal Reserve Bank of Philadelphia, October 2001; see http://www.phil.frb.org/files/wps/2001/wp01-15.pdf.
[7] Carol A. Corrado, Charles R. Hulten, and Daniel E. Sichel, 2004. Measuring Capital and Technology: An Expanded Framework. Federal Reserve Board, August 2004. http://www.federalreserve.gov/pubs/feds/2004/200465/200465pap.pdf.
[8] Leonard I. Nakamura, 2009. Intangible Assets and National Income Accounting: Measuring a Scientific Revolution, Working Paper No. 09-11, Federal Reserve Bank of Philadelphia, May 8, 2009; see http://www.philadelphiafed.org/research-and-data/publications/working-papers/2009/wp09-11.pdf.
[9] Christopher Mackie, Rapporteur, 2009. Intangible Assets: Measuring and Enhancing Their Contribution to Corporate Value and Economic Growth: Summary of a Workshop, prepared by the Board on Science, Technology, and Economic Policy (STEP) Committee on National Statistics (CNSTAT), ISBN: 0-309-14415-9, 124 pages; see http://www.nap.edu/openbook.php?record_id=1274 (available for PDF download with sign-in).
[10] Brand Finance, 2006. Global Intangible Tracker 2006: An Annual Review of the World’s Intangible Value, paper published by Brand Finance and The Institute of Practitioners in Advertising, London, UK, December 2006. See  http://www.brandfinance.com/images/upload/9.pdf.
[11] Kenan Patrick Jarboe and Roland Furrow, 2008. Intangible Asset Monetization: The Promise and the Reality, Working Paper #03 from the Athena Alliance, April 2008. See http://www.athenaalliance.org/pdf/IntangibleAssetMonetization.pdf.
[12] Uday M. Apte and Hiranya K. Nath, 2004, Size, Structure and Growth of the US Information Economy,” UCLA Anderson School of Management on Business and Information Technologies, December 2004; see  http://www.anderson.ucla.edu/documents/areas/ctr/bit/ApteNath.pdf.pdf.
[13] Uday M. Apte, Uday S. Karmarkar and Hiranya K Nath, 2008. “Information Services in the US Economy: Value, Jobs and Management Implications,” California Management Review, Vol. 50, No.3, 12-30, 2008.
[14] See the Financial Accounting Standards Board—SFAS 141; see http://www.gasb.org/pdf/fas141r.pdf.

[15] See further, AICPA Special Committee on Financial Reporting, 1994. Improving Business Reporting—A Customer Focus: Meeting the Information Needs of Investors and Creditors. See  http://www.aicpa.org/InterestAreas/AccountingAndAuditing/Resources/EBR/DownloadableDocuments/Jenkins%20Committee%20Report.pdf.

Blueprints Book librariesBroadcast licenses

Buy-sell agreements

Certificates of need

Chemical formulas

Computer software

Computerized databases

Contracts

Cooperative agreements

Copyrights

Credit information files

Customer contracts

Customer and client lists

Customer relationships

Designs and drawings Development rightsEmployment contracts

Engineering drawings

Environmental rights

Film libraries

Food flavorings and recipes

Franchise agreements

Historical documents

Heath maintenance organization enrollment lists

Know-how

Laboratory notebooks

Literary works

Management contracts

Manual databases

Manuscripts Medical charts and recordsMusical compositions

Newspaper morgue files

Noncompete covenants

Patent applications

Patents (both product and process)

Patterns

Prescription drug files

Prizes and awards

Procedural manuals

Product designs

Proposals outstanding

Proprietary computer software

Proprietary processes

Proprietary products Proprietary technologyPublications

Royalty agreements

Schematics and diagrams

Shareholder agreements

Solicitation rights

Subscription lists

Supplier contracts

Technical and specialty libraries

Technical documentation

Technology-sharing agreements

Trade secrets

Trained and assembled workforce

Training manuals

[16] See, for example, Carol Corrado, Charles Hulten and Daniel Sichel, 2009. “Intangible Capital and U.S. Economic Growth,” Review of Income and Wealth Series 55, Number 3, September 2009; see http://www.conference-board.org/pdf_free/IntangibleCapital_USEconomy.pdf.
[17] As stated in Kenan Patrick Jarboe, 2007. Measuring Intangibles: A Summary of Recent Activity, Working Paper #02 from the Athena Alliance, April 2007. See http://www.athenaalliance.org/pdf/MeasuringIntangibles.pdf.
[18] The 5% estimate comes from Graham G. Rong, Chair at MIT Sloan CIO Symposium, as reported in the SemanticWeb.com on May 5, 2011. (Rong also touted the use of semantic technologies to overcome this lack of use.) A similar 7% estimate comes from Pushpak Sarkar, 2002. “Information Quality in the Knowledge-Driven Enterprise,” InfoManagement Direct, November 2002. See http://www.information-management.com/infodirect/20021115/6045-1.html.
[19] M.K. Bergman, 2005. “Search and the ’25% Solution’,” AI3:::Adaptive Innovation blog, September 14, 2005. See http://www.mkbergman.com/121/search-and-the-25-solution/.
[20] M.K. Bergman, 2005.  “Untapped Assets: the $3 Trillion Value of U.S. Documents,” BrightPlanet Corporation White Paper, July 2005, 42 pp. Also available  online and in PDF.
[21] From the CIA, 2011. The World Factbook; accessed online at  https://www.cia.gov/library/publications/the-world-factbook/index.html on May 9, 2011. The “remaining advanced” countries are Australia, Canada, Iceland, Israel, Japan, Liechtenstein, Monaco, New Zealand, Norway, Puerto Rico, Singapore. South Korea, Switzerland, Taiwan.
[22] The range of estimates is drawn from the Nakamura [8] and CHS [9] studies, with each respectively providing the lower and upper bounds. These values have been slightly decremented for non-US advanced countries, and greatly reduced for non-advanced ones.
[23] The high range is based on the categorical share of intangible asset categories (60 of 90) from the AIPCA work [15]; the lower range is from the one-third of GDP estimates from [20].These values have been slightly decremented for non-US advanced countries, and greatly reduced for non-advanced ones.
[24] For unused information assets, the high range is based on the one-third of GDP and 25% “waste” estimates from [20]; the low range halves each of those figures. These values have been slightly decremented for non-US advanced countries, and greatly reduced for non-advanced ones (and zero for the low range).
[25] Reasons for the estimates to be too optimistic are information as important as goodwill; branding; intellectual basis of cited resources is indeed real; considerable differences by country and sector (see [10] and [16]).
[26] Reasons for the estimates to be too conservative: no network effects; greatly discounted non-advanced countries; share is growing (but older estimates used); considerable differences by country and sector (see [10] and [16]).
[27] For some discussion of individual firm impacts and use cases see [10] and [20], among others.
[28] See the Timeline of Information History, and its supporting documentation at M.K. Bergman, 2008. “Announcing the ‘Innovations in Information’ Timeline,” AI3:::Adaptive Information blog, July 6, 2008; see  http://www.mkbergman.com/421/announcing-the-innovations-in-information-timeline/.
[29] This figure is a modification of the original published by Rama C. Hoetzlein, 2007. Quanta – The Organization of Human Knowedge: Systems for Interdisciplinary Research, Master’s Thesis, University of California Santa Barbara, June 2007; see http://www.rchoetzlein.com/quanta/ (p 112). I adapted this figure to add logics, data and metadata to the basic approach, with color coding also added.
[30] From Paul A. Strassmann, 1998. “The Value of Knowledge Capital,” American Programmer, March 1998. See  http://www.strassmann.com/pubs/valuekc/.
[31] For example, according to [11], in a 2003 Accenture survey of senior managers across industries, 49 percent of respondents said that intangible assets are their primary focus for delivering long-term shareholder value, but only 5 percent stated that they had an organized system to track the performance of these assets. Also, according sources cited in Gio Wiederhold, Shirley Tessler, Amar Gupta and David Branson Smith, 2009. “The Valuation of Technology-Based Intellectual Property in Offshoring Decisions,” in Communications for the Association of Information Systems (CAIS) 24, May 2009 (see http://ilpubs.stanford.edu:8090/951/2/Article_07-270.pdf): Owners and stockholders acknowledge that IP valuation of technological assets is not routine within many organizations. A 2007 study performed by Micro Focus and INSEAD highlights the current state of affairs: Of the 250 chief information officers (CIOs) and chief finance officers (CFOs) surveyed from companies in the U.S., UK, France, Germany, and Italy, less than 50 percent had attempted to value their IT assets, and more than 60 percent did not assess the value of their software.
[32] M.K. Bergman, 2006. “Climbing the Data Federation Pyramid,” AI3:::Adaptive Information blog, May 25, 2006; see  http://www.mkbergman.com/229/climbing-the-data-federation-pyramid/.
Posted:March 18, 2011

Writing and Sharing Data Can be Lightened Up Friday     Brown Bag Lunch

Ever since I first started to learn in earnest about ontology, something has been gnawing at me. The term seemed to be (shall I say?) an obtuse one whose obscurity was not the result of subtle precision or technicality, but rather one of fuzziness. As I introduced my Intrepid Guide to Ontology two years ago, I noted:

The root of the [ontology] term is the Greek ontos, or being or the nature of things. Literally and in classical philosophy, ontology was used in relation to the study of the nature of being or the world, the nature of existence. Tom Gruber, among others, made the term popular in relation to computer science and artificial intelligence about 15 years ago when he defined ontology as a “formal specification of a conceptualization.”

Simple Data StructsSince then, I have continued to find ontology one of the hardest concepts to communicate to clients and quite a muddled mess even as used by practitioners. I have come to the conclusion that this problem is not because I have failed to grasp some ephemeral nuance, but because the term as used in practice is indeed fuzzy and imprecise.

What Isn’t an Ontology?

Even two years ago, I noted more than 40 different types of information structure that have at one time or another been labelled as an example of an “ontology”:

Since then, I could add even more terms to this list.

Lack of precision as to what ontology means has meant that it has been sloppily defined. As I have harped upon many times regarding semantic Web terminology, this is a sad state of affairs for the semWeb endeavor that has meaning at the core of its purpose.

I’m pretty sure that the original intent in embracing the concept of ontology within the realm of knowledge representation was not to see this term so broadly misused or mis-applied. I suspect, as well, that if we could sharpen up our understanding and remove some of the fuzziness that we could improve communications with the lay public across many levels of the semWeb enterprise.

The Useful Distinction of the TBox and ABox

Recently, I have been looking to the semantic Web’s roots in description logics. One of my writings, Thinking ‘Inside the Box’ with Description Logics, looked at the conceptual distinctions between the so-called ‘TBox‘ and ‘ABox‘. That is, a knowledge base is a logical schema of roles and concepts and the relationships between them (the TBox), which is populated by the actual data (instances) asserting memberships and attributes (“facts”) (the ABox).

By analogy, in a conventional relational database system, the database or logical schema would correspond to the TBox; the actual data records or tables would correspond to the ABox. Often, the term ontology is used to cover both ABox and TBox statements (which, I argue, only makes the understanding of the ‘ontology’ concept more difficult).

My recent writing, Back to the Future with Description Logics, discussed at some length the advantages of keeping the TBox and ABox separate. This current article now expands on those thoughts, particularly with respect to the definition and understanding of ontology.

The starting point for this new mindset is to return to the ideas of data records or data tables v. the logical schema that is prevalent in relational databases.

So Many Structs, So Little Time

The last time I took a census, about a year ago, there were more than 100 converters of various record and data structure types to RDF [2]. These converters — also sometimes known as translators or ‘RDFizers’ — generally take some input data records with varying formats or serializations and convert them to a form of RDF serialization (such as RDF/XML or N3), often with some ontology matching or characterizations. That last census listed these converters:

  • RDF
    • Serialization formats:
      • RDF/XML
      • N3
      • Turtle
    • Automatically recognized ontologies:
      • SIOC
      • SKOS
      • FOAF
      • AtomOWL
      • Annotea
      • Music Ontology
      • Bibliographic Ontology
      • EXIF
      • vCard
      • Others
  • (X)HTML pages
  • HTML header metadata
    • Dublin Core
  • Embedded microformats
    • eRDF
    • RDFa
    • hCard
    • hCalendar
    • XFN
    • xFolk
  • Syndication Formats:
    • RSS 2.0
    • Atom
    • OPML
    • OCS
    • XBEL (for bookmarks)
  • GRDDL [1]
  • REST-style Web service APIs:
    • Google Base
    • Flickr
    • Del.icio.us
    • Ning
    • Amazon
    • eBay
    • Freebase
    • Facebook
    • raw HTTP
    • Etc.
  • Files (multitude of file formats and MIME types, including):
    • MS Office
    • OpenOffice
    • Open Document Format
    • images
    • audio
    • video
    • Etc.
  • Web services:
    • BPEL
    • WSDL
    • XBRL
    • XBEL
  • Data exchange formats
    • iCalendar
    • vCard
  • Virtuoso VADs
  • OpenLink license files
  • Third party metadata extraction frameworks:
Note that MIT’s SIMILE RDFizers also recognizes these formats:





There is a growing list of third-party RDFizers as well:





This wealth of formats shows the robustness of the RDF data model to capture structure and data relationships from virtually any input form. This is what makes RDF so exciting as a canonical target for getting data to interoperate.

Let’s Make this Elementary, Dr. Watson

However — and this is crucial — standard users for decades have preferred simple, text-based and human readable formats for writing and transferring their structured data.

These various forms, sometimes well specified with APIs and sometimes almost ad hoc as in spreadsheet listings, are what we call ‘structs‘. Structs can all be displayed as text and have, at minimum, explicit or inferrable key-value pairs to convey data relationships and attributes, with data types and values often noted by various white space, delimiter or other text conventions.

There is no doubt that the vast majority of extant data is found in such formats, including the results of data or information extraction from unstructured text. Indeed, even HTML and many markup languages with their angle bracket-delimited fields fall into this category.

There have literally been hundreds of various formats proposed over decades for conveying lightweight data structures. Most have been proprietary or limited to specific domains or users. Some, such as fielded text, structured text, simple declarative language (SDL), or more recently YAML or its simpler cousin JSON, have become more widely adopted and supported by formal specifications, tools or APIs. JSON, especially, is a preferred form for Web 2.0 applications.

Some, like microformats or this example BibTeX record below (with some non-standard extensions), rely less on syntax conventions and may use reserved keywords (such as AUTHOR or TITLE as shown) to signal the key type for the key-value pair:

ID_LOCAL arXiv:0711.3808
AUTHOR <a href="#Schramm_O">Oded Schramm</a>
BIBTYPE ARTICLE
ID arXiv:0711.3808
JOURNAL Electron. Res. Announc. Math. Sci.
PAGES 17--23
SUBJECTS geom
TITLE Hyperfinite graph limits
URL http://www.aimsciences.org/journals/doIpChk.jsp?paperID=3117&mode=full
URL http://www.aimsciences.org/journals/displayPapers0.jsp?comments=&pubID=221&journID=14&pubString_num=Volume:
15, 2008 Journal Issue
VOLUME 15
YEAR 2008

Some of these simple formats have been more successful than others, though none have achieved market dominance. There also appear to be few universal principles that have emerged as to syntax or format. Nonetheless, any of these various struct forms are easy for casual readers to understand and easy for domain experts to write.

For modeling and interoperability purposes, many of these forms are patently inadequate. That is why many of these simpler forms might be called “naïve”: they achieve their immediate purpose of simple relationships and communication, but require understood or explicit context in order to be meaningfully (semantically) related to other forms or data.

Yet, if we have learned nothing else with the phenomenal success of the Web it is this: simplicity trumps elegance or expressivity.

RDF and the Skinny ABox

The RDF (Resource Description Framework) data model is expressed as simple subject-predicate-object “triple” statements. That sounds fancy, but just substitute verb for predicate and noun for subject and object. In other words: Dick sees Jane; or, the ball is round. It may sound like a kindergartner reader, but it is how data can be easily represented and built up into more complex structures and stories.

RDF triples can be applied equally to all structured, semi-structured and unstructured content. RDF is clearly a most capable data model that — through its ability to be extended with further concepts and relationships (vocabulary) — can create elegant and logical structures to represent comprehensive domains and knowledge bases. Finding such a model has been a quest in my professional life; I believe we finally have a winner to facilitate data interoperability using RDF.

But RDF has not achieved the market acceptance that its suitability as a data representation model might suggest. I think there are three reasons for this:

  • First, RDF was first presented and “sold” as an XML serialization. This failing has been well understood for some time. This unfortunate early linkage of RDF caused confusion between data model and the XML syntax. The rather simple and incremental building blocks of triple RDF statements when presented in the nested XML syntax led to lengthy and hard-to-read specifications (for easier reading and use, see either the N3 or Turtle syntaxes)
  • Second, triples by definition are 50% more complicated than a key-value pair. While the basic RDF statement might be simple like a Dick-and-Jane reader, as a data specification format it is still more complex than my personal attributes of sex:Male and hair:Red and born:California. Those three “facts” can not be said nearly so quickly in RDF. And, if we also adhere to linked data, each one of these items requires a URI unique identifier to boot! It is important not to ignore the desire for simple and human readable data-specification formats
  • Third, as this entry began and as we will conclude, RDF and its fuzzy relationship to ontology has led to over-specification of what needs to be included in the data record. What could simply be a record specification of an object and its attributes presented as simple key-value pairs has become burdened with “ontology” and “conceptual” relationships.

Canonical forms embody all of the specification that the canon guiding them requires. What we may have failed to see in embracing RDF, however, is that getting useful data into the system need not carry all of this burden.

Lightening Up and Shifting Work to the TBox

So, what does all of this have to do with my starting diatribe about the term ontology?

Whether a single database or the federation across all information known to human kind, we have data records (structs of instances) and a logical schema (ontology of concepts and relationships) by which we try to relate this information. This is a natural and meaningful split: structure and relationships v. the instances that populate that structure.

Stated this way, particularly for anyone with a relational database background, the split between schema and data is clear and obvious. Yet, the RDF, semantic Web and linked data communities have done an abysmal job of recognizing this fundamental separation of concerns.

We create “ontologies” that mix instances and schema. We insist on simple data record conversions that are burdened with relationship specifications as well. We tout a “linked data” infrastructure that is based solely on the same identity of instances without respect or attention to structure or conceptual relationships. We dismiss communities that work to express their data with useful local structures. We insist on standards and practices up and down the data staging and preparation chain that turns off the general market and makes us seem arrogant and dismissive. Frankly, in so many ways, we just don’t get it [3].

What has struck me personally over the past few months as these realizations have unfolded has been how much our own mindsets and language may be trapping us.

  • Does existing structured data need to be expressed as RDF in order to be useful and integrated?
  • Exposing linked and instance data is great, but to what end; what are the conceptual or structural schema?
  • Why is our standards process so inward looking and parochial (often petty)? What purpose or who does this serve?

At least for this diatribe, my essential conclusion is that we need to shift the burden of the schema and conceptual relations and (yes) world views to the TBox. We need to skinny down the ABox and make it a warm and welcoming environment by which any structured data (including the most naïve) can join.

So, ultimately, the bottom line is this: the burden of the semantic Web rests on us, not the providers of structured data.

It is time to streamline the ABox to smooth data contributions, assume as publishers the responsibility for the TBox, and keep those concerns separate. As for instance-related stuff, I now intend to refer to them as structs governed by a controlled vocabulary (at most). I intend to reserve ontology as a means to describe a given world view, a TBox, the schema and its relations of the domain at hand. And, frankly, this definition of ontology brings it back in balance with its roots in ontos and the nature of the world.

It’s a good time to lighten up!

Friday      Brown Bag Lunch This Friday brown bag leftover was first placed into the AI3 refrigerator on January 22, 2009, and is one of the more popular historical posts of this blog.  This reprise is unchanged since its original posting, though we have continued to make progress on constructs such as irON to capture this idea. Microdata in HTML5 is also an important contribution, to which we will devote some attention in the near future.

[1] GRDDL (Gleaning Resource Descriptions from Dialects of Languages) is a W3C markup format for getting RDF data out of XML and XHTML documents using explicitly associated transformation algorithms, typically represented in XSLT GRDDL accomodates a wide variety of dialects (see one listing) and can be combined with arbitrary transformation mechanisms (though currently mostly based on XSLTs).
[2] Also see the listing of “dynamic” RDFizers at http://esw.w3.org/topic/DynamicRDFizers.
[3] I don’t mean to imply that there are not those in the community interested in lightweight data structures or their conversion, just that they have been more of a minority to date. For example, the 5th Workshop on Scripting and Development for the Semantic Web is coming up this summer in conjunction with the 6th European Semantic Web Conference in Crete, Greece; this year’s organizers are Gunnar Aastrand Grimnes (DFKI Knowledge Management Lab), Chris Bizer (Freie Universität Berlin) and Sören Auer (Universität Leipzig). As other examples focusing on JSON, there are a couple of efforts to define representation conventions from Talis and GBV for serializing RDF; Jim Ley, Kanzaki Masahide and Dave Beckett (likely among others) have written simple and straightforward RDF and Turtle parsers and converters; there was a floated idea for an RDF version of JSON called RDFON that has now evolved into the TURF approach; and JDIL (JSON data integration layer) instructs how to add namespaces to JSON to enable encoding RDF. Still further examples are Beckett’s Triplr and Auer’s ASKW Triplify lightweight conversion services involving many different formats. These are all laudable efforts with good relevance to a lighter ABox approach, I think.

Posted by AI3's author, Mike Bergman Posted on March 18, 2011 at 2:08 am in Adaptive Information, Brown Bag Lunch, irON, Structured Web | Comments (2)
The URI link reference to this post is: http://www.mkbergman.com/951/brown-bag-lunch-%e2%80%98structs%e2%80%99-naive-data-formats-and-the-abox/
The URI to trackback this post is: http://www.mkbergman.com/951/brown-bag-lunch-%e2%80%98structs%e2%80%99-naive-data-formats-and-the-abox/trackback/